Consistent posets

被引:0
|
作者
Ivan Chajda
Helmut Länger
机构
[1] Palacký University Olomouc,Department of Algebra and Geometry, Faculty of Science
[2] TU Wien,Institute of Discrete Mathematics and Geometry, Faculty of Mathematics and Geoinformation
来源
Soft Computing | 2021年 / 25卷
关键词
Consistent poset; Antitone involution; Distributive poset; Strongly modular poset; Commutative meet-directoid; Residuation; Adjointness; Dedekind–MacNeille completion;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce so-called consistent posets which are bounded posets with an antitone involution ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$'$$\end{document} where the lower cones of x,x′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,x'$$\end{document} and of y,y′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y,y'$$\end{document} coincide provided that x, y are different from 0, 1 and, moreover, if x, y are different from 0, then their lower cone is different from 0, too. We show that these posets can be represented by means of commutative meet-directoids with an antitone involution satisfying certain identities and implications. In the case of a finite distributive or strongly modular consistent poset, this poset can be converted into a residuated structure and hence it can serve as an algebraic semantics of a certain non-classical logic with unsharp conjunction and implication. Finally we show that the Dedekind–MacNeille completion of a consistent poset is a consistent lattice, i.e., a bounded lattice with an antitone involution satisfying the above-mentioned properties.
引用
收藏
页码:9765 / 9772
页数:7
相关论文
共 50 条
  • [41] Webs and posets
    Dukes, M.
    Gardi, E.
    McAslan, H.
    Scott, D. J.
    White, C. D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [42] HARMONICS ON POSETS
    STANTON, D
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) : 136 - 149
  • [43] Succinct Posets
    J. Ian Munro
    Patrick K. Nicholson
    Algorithmica, 2016, 76 : 445 - 473
  • [44] COVERING POSETS
    BEHRENDT, G
    DISCRETE MATHEMATICS, 1988, 71 (03) : 189 - 195
  • [45] Varieties of posets
    Haviar, A
    Lihová, J
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2005, 22 (04): : 343 - 356
  • [46] Varieties of Posets
    Alfonz Haviar
    Judita Lihová
    Order, 2005, 22 : 343 - 356
  • [47] POSETS OF SHUFFLES
    GREENE, C
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1988, 47 (02) : 191 - 206
  • [48] Hypercontinuous Posets
    Zhang, Wenfeng
    Xu, Xiaoquan
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (02) : 195 - 200
  • [49] Stirling Posets
    Can, Mahir Bilen
    Cherniavsky, Yonah
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 237 (01) : 185 - 219
  • [50] SIGNED POSETS
    REINER, V
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (02) : 324 - 360