Consistent posets

被引:0
|
作者
Ivan Chajda
Helmut Länger
机构
[1] Palacký University Olomouc,Department of Algebra and Geometry, Faculty of Science
[2] TU Wien,Institute of Discrete Mathematics and Geometry, Faculty of Mathematics and Geoinformation
来源
Soft Computing | 2021年 / 25卷
关键词
Consistent poset; Antitone involution; Distributive poset; Strongly modular poset; Commutative meet-directoid; Residuation; Adjointness; Dedekind–MacNeille completion;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce so-called consistent posets which are bounded posets with an antitone involution ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$'$$\end{document} where the lower cones of x,x′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,x'$$\end{document} and of y,y′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y,y'$$\end{document} coincide provided that x, y are different from 0, 1 and, moreover, if x, y are different from 0, then their lower cone is different from 0, too. We show that these posets can be represented by means of commutative meet-directoids with an antitone involution satisfying certain identities and implications. In the case of a finite distributive or strongly modular consistent poset, this poset can be converted into a residuated structure and hence it can serve as an algebraic semantics of a certain non-classical logic with unsharp conjunction and implication. Finally we show that the Dedekind–MacNeille completion of a consistent poset is a consistent lattice, i.e., a bounded lattice with an antitone involution satisfying the above-mentioned properties.
引用
收藏
页码:9765 / 9772
页数:7
相关论文
共 50 条
  • [31] STABILITY AND POSETS
    Jockusch, Carl G., Jr.
    Kastermans, Bart
    Lempp, Steffen
    Lerman, Manuel
    Solomon, Reed
    JOURNAL OF SYMBOLIC LOGIC, 2009, 74 (02) : 693 - 711
  • [32] Webs and posets
    M. Dukes
    E. Gardi
    H. McAslan
    D. J. Scott
    C. D. White
    Journal of High Energy Physics, 2014
  • [33] QUASICONTINUOUS POSETS
    VENUGOPALAN, P
    SEMIGROUP FORUM, 1990, 41 (02) : 193 - 200
  • [34] NEUTRALITY IN POSETS
    MURTY, MK
    RAO, GC
    ALGEBRA UNIVERSALIS, 1981, 13 (03) : 401 - 404
  • [35] Jnsson posets
    Assous, Roland
    Pouzet, Maurice
    ALGEBRA UNIVERSALIS, 2018, 79 (03)
  • [36] Baxter Posets
    Meehan, Emily
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [37] Stirling posets
    Mahir Bilen Can
    Yonah Cherniavsky
    Israel Journal of Mathematics, 2020, 237 : 185 - 219
  • [38] Macaulay Posets
    Bezrukov, Sergei L.
    Leck, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2004,
  • [39] Pseudo Difference Posets and Pseudo Boolean D-Posets
    Shang Yun
    Li Yongming
    Chen Maoyin
    International Journal of Theoretical Physics, 2004, 43 : 2447 - 2460
  • [40] Pseudo difference posets and pseudo boolean D-posets
    Shang, Y
    Li, YM
    Chen, MY
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (12) : 2447 - 2460