Consistent posets

被引:0
|
作者
Ivan Chajda
Helmut Länger
机构
[1] Palacký University Olomouc,Department of Algebra and Geometry, Faculty of Science
[2] TU Wien,Institute of Discrete Mathematics and Geometry, Faculty of Mathematics and Geoinformation
来源
Soft Computing | 2021年 / 25卷
关键词
Consistent poset; Antitone involution; Distributive poset; Strongly modular poset; Commutative meet-directoid; Residuation; Adjointness; Dedekind–MacNeille completion;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce so-called consistent posets which are bounded posets with an antitone involution ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$'$$\end{document} where the lower cones of x,x′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,x'$$\end{document} and of y,y′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y,y'$$\end{document} coincide provided that x, y are different from 0, 1 and, moreover, if x, y are different from 0, then their lower cone is different from 0, too. We show that these posets can be represented by means of commutative meet-directoids with an antitone involution satisfying certain identities and implications. In the case of a finite distributive or strongly modular consistent poset, this poset can be converted into a residuated structure and hence it can serve as an algebraic semantics of a certain non-classical logic with unsharp conjunction and implication. Finally we show that the Dedekind–MacNeille completion of a consistent poset is a consistent lattice, i.e., a bounded lattice with an antitone involution satisfying the above-mentioned properties.
引用
收藏
页码:9765 / 9772
页数:7
相关论文
共 50 条
  • [21] Tchebyshev Posets
    Gábor Hetyei
    Discrete & Computational Geometry, 2004, 32 : 493 - 520
  • [22] POSETS FOR CONFIGURATIONS
    RENSINK, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 630 : 269 - 285
  • [23] Partitioning posets
    Patel, Viresh
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2008, 25 (02): : 131 - 152
  • [24] On multipartite posets
    Agnarsson, Geir
    DISCRETE MATHEMATICS, 2008, 308 (22) : 5284 - 5288
  • [25] Hypercontinuous posets
    Wenfeng Zhang
    Xiaoquan Xu
    Chinese Annals of Mathematics, Series B, 2015, 36 : 195 - 200
  • [26] Representable posets
    Egrot, Rob
    JOURNAL OF APPLIED LOGIC, 2016, 16 : 60 - 71
  • [27] Tchebyshev posets
    Hetyei, G
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 32 (04) : 493 - 520
  • [28] Independence posets
    Thomas, Hugh
    Williams, Nathan
    JOURNAL OF COMBINATORICS, 2019, 10 (03) : 545 - 578
  • [29] Cayley Posets
    Garcia-Marco, Ignacio
    Knauer, Kolja
    Mercui-Voyant, Guillaume
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (06)
  • [30] REALIZABLE POSETS
    PIERCE, RS
    VINSONHALER, C
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1990, 7 (03): : 275 - 282