Consistent posets

被引:0
|
作者
Ivan Chajda
Helmut Länger
机构
[1] Palacký University Olomouc,Department of Algebra and Geometry, Faculty of Science
[2] TU Wien,Institute of Discrete Mathematics and Geometry, Faculty of Mathematics and Geoinformation
来源
Soft Computing | 2021年 / 25卷
关键词
Consistent poset; Antitone involution; Distributive poset; Strongly modular poset; Commutative meet-directoid; Residuation; Adjointness; Dedekind–MacNeille completion;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce so-called consistent posets which are bounded posets with an antitone involution ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$'$$\end{document} where the lower cones of x,x′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,x'$$\end{document} and of y,y′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y,y'$$\end{document} coincide provided that x, y are different from 0, 1 and, moreover, if x, y are different from 0, then their lower cone is different from 0, too. We show that these posets can be represented by means of commutative meet-directoids with an antitone involution satisfying certain identities and implications. In the case of a finite distributive or strongly modular consistent poset, this poset can be converted into a residuated structure and hence it can serve as an algebraic semantics of a certain non-classical logic with unsharp conjunction and implication. Finally we show that the Dedekind–MacNeille completion of a consistent poset is a consistent lattice, i.e., a bounded lattice with an antitone involution satisfying the above-mentioned properties.
引用
收藏
页码:9765 / 9772
页数:7
相关论文
共 50 条
  • [1] Consistent posets
    Chajda, Ivan
    Laenger, Helmut
    SOFT COMPUTING, 2021, 25 (15) : 9765 - 9772
  • [2] Wilcox posets and parallelism in posets
    Shewale, R. S.
    Kharat, Vilas
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (04)
  • [3] On posets with isomorphic interval posets
    Lihová, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1999, 49 (01) : 67 - 80
  • [4] On posets with isomorphic interval posets
    Judita Lihová
    Czechoslovak Mathematical Journal, 1999, 49 : 67 - 80
  • [5] Plane posets, special posets, and permutations
    Foissy, L.
    ADVANCES IN MATHEMATICS, 2013, 240 : 24 - 60
  • [6] INCIDENCE POSETS OF TREES IN POSETS OF LARGE DIMENSION
    BRIGHTWELL, GR
    TROTTER, WT
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1994, 11 (02): : 159 - 167
  • [7] DISCONNECTED POSETS AND LD-IRREDUCIBLE POSETS
    Chae, Gab-Byung
    Cheong, MinSeok
    Kim, Sang-Mok
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (01): : 189 - 196
  • [8] INTERVAL NUMBER OF SPECIAL POSETS AND RANDOM POSETS
    MADEJ, T
    WEST, DB
    DISCRETE MATHEMATICS, 1995, 144 (1-3) : 67 - 74
  • [9] KLEENE POSETS AND PSEUDO-KLEENE POSETS
    Chajda, Ivan
    Langer, Helmut
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 155 - 174
  • [10] AUTOMORPHISM-GROUPS OF COVERING POSETS AND OF DENSE POSETS
    BEHRENDT, G
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1992, 35 : 115 - 120