Deterministic Parallel Algorithms for Bilinear Objective Functions

被引:0
|
作者
David G. Harris
机构
[1] University of Maryland,Department of Computer Science
来源
Algorithmica | 2019年 / 81卷
关键词
Derandomization; Bilinear objective; Maximal independent set; Fooling automata;
D O I
暂无
中图分类号
学科分类号
摘要
Many randomized algorithms can be derandomized efficiently using either the method of conditional expectations or probability spaces with low independence. A series of papers, beginning with work by Luby (1988), showed that in many cases these techniques can be combined to give deterministic parallel (NC) algorithms for a variety of combinatorial optimization problems, with low time- and processor-complexity. We extend and generalize a technique of Luby for efficiently handling bilinear objective functions. One noteworthy application is an NC algorithm for maximal independent set. On a graph G with m edges and n vertices, this takes O~(log2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(\log ^2 n)$$\end{document} time and (m+n)no(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m + n) n^{o(1)}$$\end{document} processors, nearly matching the best randomized parallel algorithms. Other applications include reduced processor counts for algorithms of Berger (SIAM J Comput 26:1188–1207, 1997) for maximum acyclic subgraph and Gale–Berlekamp switching games. This bilinear factorization also gives better algorithms for problems involving discrepancy. An important application of this is to automata-fooling probability spaces, which are the basis of a notable derandomization technique of Sivakumar (In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC), pp 619–626, 2002). Our method leads to large reduction in processor complexity for a number of derandomization algorithms based on automata-fooling, including set discrepancy and the Johnson–Lindenstrauss Lemma.
引用
收藏
页码:1288 / 1318
页数:30
相关论文
共 50 条
  • [21] THE AVERAGE COMPLEXITY OF DETERMINISTIC AND RANDOMIZED PARALLEL COMPARISON-SORTING ALGORITHMS
    ALON, N
    AZAR, Y
    SIAM JOURNAL ON COMPUTING, 1988, 17 (06) : 1178 - 1192
  • [22] Deterministic Parallel Algorithms for Fooling Polylogarithmic Juntas and the Lovasz Local Lemma
    Harris, David G.
    ACM TRANSACTIONS ON ALGORITHMS, 2018, 14 (04)
  • [23] A Deterministic Parallel Routing Approach for Accelerating Pathfinder-based Algorithms
    Siddiqi, Umair F.
    Grewal, Gary
    Areibi, Shawki
    2023 IFIP/IEEE 31ST INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION, VLSI-SOC, 2023, : 253 - 258
  • [24] Two simulated annealing algorithms for noisy objective functions
    Prudius, AA
    Andradóttir, S
    PROCEEDINGS OF THE 2005 WINTER SIMULATION CONFERENCE, VOLS 1-4, 2005, : 797 - 802
  • [25] A study of crossvalidation and bootstrap as objective functions for genetic algorithms
    de Lacerda, EGM
    de Carvalho, ACPLF
    Ludermir, TB
    VII BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, PROCEEDINGS, 2002, : 118 - 123
  • [26] Spanning tree objective functions and algorithms for wireless networks
    Morgan, Mike
    Grout, Vic
    2006 IEEE SARNOFF SYMPOSIUM, 2006, : 274 - 277
  • [27] Bilinear functions
    Frechet, Maurice
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1915, 16 (1-4) : 215 - 234
  • [28] Subspace identification of deterministic bilinear systems
    Chen, HX
    Maciejowski, J
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 1797 - 1801
  • [29] Parallel Multi-Objective Algorithms for the Molecular Docking Problem
    Boisson, Jean-Charles
    Jourdan, Laetitia
    Talbi, El-Ghazali
    Horvath, Dragos
    2008 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2008, : 154 - 161
  • [30] Parallel Multi-Objective Evolutionary Algorithms: A Comprehensive Survey
    Falcon-Cardona, Jesus Guillermo
    Gomez, Raquel Hernandez
    Coello, Carlos A. Coello
    Tapia, Ma. Guadalupe Castillo
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 67