Deterministic Parallel Algorithms for Bilinear Objective Functions

被引:0
|
作者
David G. Harris
机构
[1] University of Maryland,Department of Computer Science
来源
Algorithmica | 2019年 / 81卷
关键词
Derandomization; Bilinear objective; Maximal independent set; Fooling automata;
D O I
暂无
中图分类号
学科分类号
摘要
Many randomized algorithms can be derandomized efficiently using either the method of conditional expectations or probability spaces with low independence. A series of papers, beginning with work by Luby (1988), showed that in many cases these techniques can be combined to give deterministic parallel (NC) algorithms for a variety of combinatorial optimization problems, with low time- and processor-complexity. We extend and generalize a technique of Luby for efficiently handling bilinear objective functions. One noteworthy application is an NC algorithm for maximal independent set. On a graph G with m edges and n vertices, this takes O~(log2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(\log ^2 n)$$\end{document} time and (m+n)no(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m + n) n^{o(1)}$$\end{document} processors, nearly matching the best randomized parallel algorithms. Other applications include reduced processor counts for algorithms of Berger (SIAM J Comput 26:1188–1207, 1997) for maximum acyclic subgraph and Gale–Berlekamp switching games. This bilinear factorization also gives better algorithms for problems involving discrepancy. An important application of this is to automata-fooling probability spaces, which are the basis of a notable derandomization technique of Sivakumar (In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC), pp 619–626, 2002). Our method leads to large reduction in processor complexity for a number of derandomization algorithms based on automata-fooling, including set discrepancy and the Johnson–Lindenstrauss Lemma.
引用
收藏
页码:1288 / 1318
页数:30
相关论文
共 50 条
  • [41] Study The Effect of High Dimensional Objective Functions on Multi-Objective Evolutionary Algorithms
    Safi, Hayder H.
    Ucan, Osman N.
    Bayat, Oguz
    ICEMIS'18: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON ENGINEERING AND MIS, 2018,
  • [42] Clustering Based Parallel Many-Objective Evolutionary Algorithms Using the Shape of the Objective Vectors
    von Luecken, Christian
    Brizuela, Carlos
    Baran, Benjamin
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT II, 2015, 9019 : 50 - 64
  • [43] Majorization-Minimization algorithms for nonsmoothly penalized objective functions
    Schifano, Elizabeth D.
    Strawderman, Robert L.
    Wells, Martin T.
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1258 - 1299
  • [44] Algorithms with performance guarantees for flow shops with regular objective functions
    Koulamas, C
    Kyparisis, GJ
    IIE TRANSACTIONS, 2005, 37 (12) : 1107 - 1111
  • [45] Convergence rates of evolutionary algorithms for a class of convex objective functions
    Rudolph, G
    CONTROL AND CYBERNETICS, 1997, 26 (03): : 375 - 390
  • [46] Analysis and evaluation of objective functions in kinematic calibration of parallel mechanisms
    Majarena, A. C.
    Santolaria, J.
    Samper, D.
    Aguilar, J. J.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 66 (5-8): : 751 - 761
  • [47] Analysis and evaluation of objective functions in kinematic calibration of parallel mechanisms
    A. C. Majarena
    J. Santolaria
    D. Samper
    J. J. Aguilar
    The International Journal of Advanced Manufacturing Technology, 2013, 66 : 751 - 761
  • [48] Analysis and evaluation of objective functions in kinematic calibration of parallel mechanisms
    Majarena, A.C. (majarena@unizar.es), 1600, Springer London (66): : 5 - 8
  • [49] Comparison of multiple objective genetic algorithms for parallel machine scheduling problems
    Carlyle, WM
    Kim, B
    Fowler, JW
    Gel, ES
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 472 - 485
  • [50] Objective model selection with parallel genetic algorithms using an eradication strategy
    Plante, Jean-Francois
    Larocque, Maxime
    Ades, Michel
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (02): : 636 - 654