Parallel Multi-Objective Evolutionary Algorithms: A Comprehensive Survey

被引:23
|
作者
Falcon-Cardona, Jesus Guillermo [1 ]
Gomez, Raquel Hernandez [1 ]
Coello, Carlos A. Coello [1 ,2 ,3 ]
Tapia, Ma. Guadalupe Castillo [4 ]
机构
[1] CINVESTAV IPN, Dept Comp Sci, Av IPN 2508, Mexico City 07300, DF, Mexico
[2] Basque Ctr Appl Math BCAM, Bilbao, Spain
[3] Ikerbasque, Bilbao, Spain
[4] UAM Azcapotzalco, Dept Adm, Av San Pablo 180, Mexico City 02200, DF, Mexico
关键词
Multi-objective optimization; Evolutionary algorithms; Parallel computing; NONDOMINATED SORTING APPROACH; GENETIC ALGORITHM; SMS-EMOA; OPTIMIZATION; SELECTION; PERFORMANCE; FRAMEWORK; MOEA/D; DECOMPOSITION; ADAPTATION;
D O I
10.1016/j.swevo.2021.100960
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-Objective Evolutionary Algorithms (MOEAs) are powerful search techniques that have been extensively used to solve difficult problems in a wide variety of disciplines. However, they can be very demanding in terms of computational resources. Parallel implementations of MOEAs (pMOEAs) provide considerable gains regarding performance and scalability and, therefore, their relevance in tackling computationally expensive applications. This paper presents a survey of pMOEAs, describing a refined taxonomy, an up-to-date review of methods and the key contributions to the field. Furthermore, some of the open questions that require further research are also briefly discussed.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Indicator-based Multi-objective Evolutionary Algorithms: A Comprehensive Survey
    Guillermo Falcon-Cardona, Jesus
    Coello Coello, Carlos A.
    [J]. ACM COMPUTING SURVEYS, 2020, 53 (02)
  • [2] Parallel Library of Multi-objective Evolutionary Algorithms
    Leon, Coromoto
    Miranda, Gara
    Segredo, Eduardo
    Segura, Carlos
    [J]. PROCEEDINGS OF THE PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, 2009, : 28 - 35
  • [3] A unified view of parallel multi-objective evolutionary algorithms
    Talbi, EI-Ghazali
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 133 : 349 - 358
  • [4] Preference incorporation in Multi-Objective Evolutionary Algorithms: A survey
    Rachmawati, L.
    Srinivasan, D.
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 954 - +
  • [5] Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey
    Ishibuchi, Hisao
    Namikawa, Naoki
    Ohara, Ken
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 968 - +
  • [6] Survey on Performance Indicators for Multi-Objective Evolutionary Algorithms
    Wang, Li-Ping
    Ren, Yu
    Qiu, Qi-Cang
    Qiu, Fei-Yue
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (08): : 1590 - 1619
  • [7] A survey on multi-objective evolutionary algorithms for many-objective problems
    Christian von Lücken
    Benjamín Barán
    Carlos Brizuela
    [J]. Computational Optimization and Applications, 2014, 58 : 707 - 756
  • [8] A survey on multi-objective evolutionary algorithms for many-objective problems
    von Luecken, Christian
    Baran, Benjamin
    Brizuela, Carlos
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 58 (03) : 707 - 756
  • [9] Multi-Objective Evolutionary Algorithms Embedded with Machine Learning - A Survey
    Fan, Zhun
    Hu, Kaiwen
    Li, Fang
    Rong, Yibiao
    Li, Wenji
    Lin, Huibiao
    [J]. 2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 1262 - 1266
  • [10] A Survey on Search Strategy of Evolutionary Multi-Objective Optimization Algorithms
    Wang, Zitong
    Pei, Yan
    Li, Jianqiang
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (07):