Numerical and experimental investigations of wave transmission behind a submerged WABCORE breakwater in low wave regime

被引:0
|
作者
Sheikh Fakhruradzi Abdullah
Ahmad Fitriadhy
Safari Mat Desa
机构
[1] University Malaysia Terengganu,Program of Maritime Technology, School of Ocean Engineering
[2] National Hydraulic Research Institute of Malaysia (NAHRIM),undefined
关键词
Submerged breakwater; Wave transformation; Transmission coefficient; Hydrodynamic modelling;
D O I
暂无
中图分类号
学科分类号
摘要
In the presence of the complex-hydrodynamic phenomenon, the previous studies on wave transmission characteristics behind low-crested submerged breakwaters are still insufficient yet to appropriately understand of their behaviour. Therefore, a reliable prediction through a computational fluid dynamic (CFD) approach of waves across the structure is necessarily required. This paper presents three-dimensional (3D) computational modelling on hydrodynamic performance of narrow crest behind submerged breakwater aimed at gaining a comprehensive insight into the wave transmission coefficient (Kt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K_{t})$$\end{document} characteristics. Meanwhile, a two-dimensional (2D) analysis has been initially carried out to provide a satisfactory description of the fundamental hydrodynamic phenomena through capturing the patterns of wave surface profile, flow velocity, and wave energy dissipation. In addition, a numerical wave tank model is well developed on the basis of the extended Reynolds Average Navier–Stokes (RANS) solver incorporated with level set algorithm to treat highly nonlinear effects at interface boundary between water, air and porous obstacle. Here, a submerged breakwater called as wave breaker coral restorer (WABCORE) designed by the National Water Research Institute of Malaysia is then employed. Based on the capability of laboratory experiment, the tested wave parameters were properly selected in 1:4 scaled model of the breakwater for wave height ranging from 0.10 to 0.25 m and wave period ranging from 1.5 to 2.5 s, in which correspond to the recorded wave prototype characteristics at Island of Tinggi, Malaysia. Thus, the wave constraints on a regime of small wave height and wavelength were then considered for various relative significant incident wave height, wave steepness, relative structural crest width and water-depth and have been taken into account in the computational simulation of the transmission coefficient (Kt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K_{t})$$\end{document}. The result shows that a good agreement was obtained between numerical and experimental measurements. Kt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{t}$$\end{document} decreases to less than 0.5 with increasing relative water depth (0.40≤h/d≤1.00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.40 \le h/d \le 1.00$$\end{document}) for significant incident wave height (0.1338≤Hs/d≤0.5547\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1338 \le H_s/d \le 0.5547$$\end{document}), wave steepness (0.0164≤Hs/L≤0.1303\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.0164 \le H_s/L \le 0.1303$$\end{document}), and crest width of breakwater (0.0256 ≤Cw/L≤0.0512\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le C_w/L \le 0.0512$$\end{document}). Detailed investigation suggests that the result is attributed to significant wave transformation in the vicinity of breakwater, especially for higher h/d. Furthermore, the wave absorbing effect of the submerged WABCORE breakwater is markedly better for increased steepness of Hs/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{s}}/{L}$$\end{document} from 0.0292 to 0.0204 at h/d=1.00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h/d=1.00$$\end{document}, which is consistent with the augmented turbulent energy and dissipation shown on CFD visualizations across the breakwater entanglement.
引用
收藏
页码:405 / 420
页数:15
相关论文
共 50 条
  • [41] Wave parameters after smooth submerged breakwater
    Carevic, Dalibor
    Loncar, Goran
    Prsic, Marko
    COASTAL ENGINEERING, 2013, 79 : 32 - 41
  • [42] Numerical and Experimental Modeling of Regular Wave Interacting with Composite Breakwater
    Didier, E.
    Martins, R.
    Neves, M. G.
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2013, 23 (01) : 46 - 54
  • [43] Numerical and experimental modeling of regular wave interacting with composite breakwater
    1600, International Society of Offshore and Polar Engineers (23):
  • [44] Nonlinear wave transmission and pressure on the fixed truncated breakwater using NURBS numerical wave tank
    Abbasnia, Arash
    Ghiasi, Mahmoud
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2014, 11 (01): : 51 - 74
  • [45] BREAKWATER GAP WAVE DIFFRACTION - AN EXPERIMENTAL AND NUMERICAL STUDY - CLOSURE
    POS, JD
    KILNER, FA
    JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE, 1988, 114 (04): : 535 - 537
  • [46] BREAKWATER GAP WAVE DIFFRACTION - AN EXPERIMENTAL AND NUMERICAL STUDY - DISCUSSION
    MEMOS, CD
    JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE, 1988, 114 (04): : 533 - 537
  • [47] EXPERIMENTAL AND NUMERICAL STUDY ON WAVE ABSORBING BREAKWATER USING BUTTRESS
    Takahashi, K.
    Tanaka, H.
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON ASIAN AND PACIFIC COASTS, APAC 2019, 2020, : 979 - 986
  • [48] Field Observation and Numerical Modelling on the Hydrodynamics Behind a Submerged Breakwater
    Kim, In Ho
    Kim, Jinhoon
    Jeong, Yeon-Myeong
    Hur, Dong Soo
    Shin, Sungwon
    JOURNAL OF COASTAL RESEARCH, 2017, : 304 - 308
  • [49] Fluid motion with wave overtopping behind a breakwater
    Watanabe, Y
    Wang, Y
    Saeki, H
    Hayakawa, T
    COASTAL STRUCTURES '99, VOLUMES 1 & 2, 2000, : 183 - 191
  • [50] NUMERICAL DETERMINATION OF WAVE TRANSMISSION THROUGH A RUBBLEMOUND BREAKWATER AT VISAKHAPATNAM, INDIA
    SASTRY, SVSLN
    HOLSCHER, P
    BARENDS, FBJ
    COASTAL ENGINEERING, 1991, 15 (1-2) : 41 - 57