Numerical and experimental investigations of wave transmission behind a submerged WABCORE breakwater in low wave regime

被引:0
|
作者
Sheikh Fakhruradzi Abdullah
Ahmad Fitriadhy
Safari Mat Desa
机构
[1] University Malaysia Terengganu,Program of Maritime Technology, School of Ocean Engineering
[2] National Hydraulic Research Institute of Malaysia (NAHRIM),undefined
关键词
Submerged breakwater; Wave transformation; Transmission coefficient; Hydrodynamic modelling;
D O I
暂无
中图分类号
学科分类号
摘要
In the presence of the complex-hydrodynamic phenomenon, the previous studies on wave transmission characteristics behind low-crested submerged breakwaters are still insufficient yet to appropriately understand of their behaviour. Therefore, a reliable prediction through a computational fluid dynamic (CFD) approach of waves across the structure is necessarily required. This paper presents three-dimensional (3D) computational modelling on hydrodynamic performance of narrow crest behind submerged breakwater aimed at gaining a comprehensive insight into the wave transmission coefficient (Kt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K_{t})$$\end{document} characteristics. Meanwhile, a two-dimensional (2D) analysis has been initially carried out to provide a satisfactory description of the fundamental hydrodynamic phenomena through capturing the patterns of wave surface profile, flow velocity, and wave energy dissipation. In addition, a numerical wave tank model is well developed on the basis of the extended Reynolds Average Navier–Stokes (RANS) solver incorporated with level set algorithm to treat highly nonlinear effects at interface boundary between water, air and porous obstacle. Here, a submerged breakwater called as wave breaker coral restorer (WABCORE) designed by the National Water Research Institute of Malaysia is then employed. Based on the capability of laboratory experiment, the tested wave parameters were properly selected in 1:4 scaled model of the breakwater for wave height ranging from 0.10 to 0.25 m and wave period ranging from 1.5 to 2.5 s, in which correspond to the recorded wave prototype characteristics at Island of Tinggi, Malaysia. Thus, the wave constraints on a regime of small wave height and wavelength were then considered for various relative significant incident wave height, wave steepness, relative structural crest width and water-depth and have been taken into account in the computational simulation of the transmission coefficient (Kt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K_{t})$$\end{document}. The result shows that a good agreement was obtained between numerical and experimental measurements. Kt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{t}$$\end{document} decreases to less than 0.5 with increasing relative water depth (0.40≤h/d≤1.00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.40 \le h/d \le 1.00$$\end{document}) for significant incident wave height (0.1338≤Hs/d≤0.5547\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1338 \le H_s/d \le 0.5547$$\end{document}), wave steepness (0.0164≤Hs/L≤0.1303\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.0164 \le H_s/L \le 0.1303$$\end{document}), and crest width of breakwater (0.0256 ≤Cw/L≤0.0512\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le C_w/L \le 0.0512$$\end{document}). Detailed investigation suggests that the result is attributed to significant wave transformation in the vicinity of breakwater, especially for higher h/d. Furthermore, the wave absorbing effect of the submerged WABCORE breakwater is markedly better for increased steepness of Hs/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{s}}/{L}$$\end{document} from 0.0292 to 0.0204 at h/d=1.00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h/d=1.00$$\end{document}, which is consistent with the augmented turbulent energy and dissipation shown on CFD visualizations across the breakwater entanglement.
引用
收藏
页码:405 / 420
页数:15
相关论文
共 50 条
  • [31] Numerical and experimental investigations on wave transmission reduction using vegetation models
    Alyousif, Ahmad
    Magdalena, I.
    Rif'atin, H. Q.
    Abdulrahman, Reem H.
    Neelamani, S.
    WAVE MOTION, 2024, 130
  • [32] Wave Transmission on Submerged Rubble Mound Breakwater Using L-Blocks
    Yuliastuti, Dayat Indri
    Hashim, Ahmad Mustafa
    ENVIRONMENTAL SCIENCE AND TECHNOLOGY, PT 1, 2011, 6 : VI243 - VI248
  • [33] Wave Transformation between Submerged Breakwater and Seawall
    Chen, Hong-Bin
    Tsai, Ching-Piao
    Jeng, Chun-Chieh
    JOURNAL OF COASTAL RESEARCH, 2007, : 1069 - 1074
  • [34] Solitary Wave Propagation Influenced by Submerged Breakwater
    王锦
    左其华
    王登婷
    Shirin Shukrievab
    China Ocean Engineering, 2013, 27 (05) : 593 - 604
  • [35] Wave forces on partially submerged pipe breakwater
    Mani, JS
    OCEAN WAVE KINEMATICS, DYNAMICS AND LOADS ON STRUCTURES, 1998, : 505 - 512
  • [36] A Study for Wave Absorbing Effect of Submerged Breakwater
    Shin, Moon Seup
    Park, Koo Yong
    Lee, Hyun Jin
    PROCEEDINGS OF THE EIGHTEENTH (2008) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 3, 2008, : 607 - +
  • [37] Regular Wave Measurements on a Submerged Semicircular Breakwater
    Dhinakaran, G.
    Sundar, V.
    Sundaravadivelu, R.
    Graw, K. U.
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2010, 132 (03): : 1 - 6
  • [38] Wave Transmission and Water Setup Behind an Emergent Rubble-Mound Breakwater
    Cappietti, Lorenzo
    Sherman, D. J.
    Ellis, J. T.
    JOURNAL OF COASTAL RESEARCH, 2013, 29 (03) : 694 - 705
  • [39] Solitary wave propagation influenced by submerged breakwater
    Jin Wang
    Qi-hua Zuo
    Deng-ting Wang
    Shirin Shukrieva
    China Ocean Engineering, 2013, 27 : 593 - 604
  • [40] Solitary wave propagation influenced by submerged breakwater
    Wang Jin
    Zuo Qi-hua
    Wang Deng-ting
    Shukrieva, Shirin
    CHINA OCEAN ENGINEERING, 2013, 27 (05) : 593 - 604