Stochastic Navier–Stokes Equations for Turbulent Flows in Critical Spaces

被引:0
|
作者
Antonio Agresti
Mark Veraar
机构
[1] TU Kaiserslautern,Department of Mathematics
[2] Delft University of Technology, Delft Institute of Applied Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the stochastic Navier–Stokes equations on the d-dimensional torus with transport noise, which arise in the study of turbulent flows. Under very weak smoothness assumptions on the data we prove local well-posedness in the critical case Bq,pd/q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}^{d/q-1}_{q,p}$$\end{document} for q∈[2,2d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in [2,2d)$$\end{document} and p large enough. Moreover, we obtain new regularization results for solutions, and new blow-up criteria which can be seen as a stochastic version of the Serrin blow-up criteria. The latter is used to prove global well-posedness with high probability for small initial data in critical spaces in any dimensions d⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\geqslant 2$$\end{document}. Moreover, for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document}, we obtain new global well-posedness results and regularization phenomena which unify and extend several earlier results.
引用
收藏
相关论文
共 50 条
  • [31] On Weighted Estimates for the Stokes Flows, with Application to the Navier–Stokes Equations
    Pigong Han
    Journal of Mathematical Fluid Mechanics, 2018, 20 : 1155 - 1172
  • [32] Solutions of Burgers, Reynolds, and Navier—Stokes Equations via Stochastic Perturbations of Inviscid Flows
    Yuri E. Gliklikh
    Journal of Nonlinear Mathematical Physics, 2010, 17 : 15 - 29
  • [33] Ba SPACES AND NAVIER-STOKES EQUATIONS
    丁夏畦
    王靖华
    Acta Mathematica Scientia, 1985, (01) : 53 - 65
  • [34] BA SPACES AND NAVIER-STOKES EQUATIONS
    DING, XX
    WANG, JH
    ACTA MATHEMATICA SCIENTIA, 1985, 5 (01) : 53 - 65
  • [35] Stochastic cascades and Navier-Stokes equations
    LeJan, Y
    Sznitman, AS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (07): : 823 - 826
  • [36] Local solutions for stochastic Navier stokes equations
    Bensoussan, A
    Frehse, J
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02): : 241 - 273
  • [37] Stochastic Navier-Stokes-Fourier Equations
    Breit, Dominic
    Feireisl, Eduard
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (03) : 911 - 975
  • [38] Approximations of stochastic Navier-Stokes equations
    Shang, Shijie
    Zhang, Tusheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (04) : 2407 - 2432
  • [39] On unbiased stochastic Navier-Stokes equations
    Mikulevicius, R.
    Rozovskii, B. L.
    PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (3-4) : 787 - 834
  • [40] Synchronization to Big Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent Flows
    Di Leoni, Patricio Clark
    Mazzino, Andrea
    Biferale, Luca
    PHYSICAL REVIEW X, 2020, 10 (01)