Stochastic Navier–Stokes Equations for Turbulent Flows in Critical Spaces

被引:0
|
作者
Antonio Agresti
Mark Veraar
机构
[1] TU Kaiserslautern,Department of Mathematics
[2] Delft University of Technology, Delft Institute of Applied Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the stochastic Navier–Stokes equations on the d-dimensional torus with transport noise, which arise in the study of turbulent flows. Under very weak smoothness assumptions on the data we prove local well-posedness in the critical case Bq,pd/q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}^{d/q-1}_{q,p}$$\end{document} for q∈[2,2d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in [2,2d)$$\end{document} and p large enough. Moreover, we obtain new regularization results for solutions, and new blow-up criteria which can be seen as a stochastic version of the Serrin blow-up criteria. The latter is used to prove global well-posedness with high probability for small initial data in critical spaces in any dimensions d⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\geqslant 2$$\end{document}. Moreover, for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document}, we obtain new global well-posedness results and regularization phenomena which unify and extend several earlier results.
引用
收藏
相关论文
共 50 条
  • [21] TURBULENT SOLUTION OF THE NAVIER-STOKES EQUATIONS
    DEISSLER, RG
    PHYSICS OF FLUIDS, 1981, 24 (09) : 1595 - 1601
  • [22] TURBULENT SOLUTION OF THE NAVIER-STOKES EQUATIONS
    DEISSLER, RG
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (09): : 1098 - 1098
  • [23] On the Wellposedness of Three-Dimensional Inhomogeneous Navier–Stokes Equations in the Critical Spaces
    Hammadi Abidi
    Guilong Gui
    Ping Zhang
    Archive for Rational Mechanics and Analysis, 2012, 204 : 189 - 230
  • [24] NEW REGULARITY CRITERIA FOR NAVIER-STOKES AND SQG EQUATIONS IN CRITICAL SPACES
    Xu, Yiran
    Ha, Ly Kim
    Li, Haina
    Wang, Zexi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (04) : 1079 - 1095
  • [25] Improved Quantitative Regularity for the Navier-Stokes Equations in a Scale of Critical Spaces
    Palasek, Stan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 242 (03) : 1479 - 1531
  • [26] Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces
    Bae, Hantaek
    Biswas, Animikh
    Tadmor, Eitan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) : 963 - 991
  • [27] On the continuity of the solutions to the Navier–Stokes equations with initial data in critical Besov spaces
    Reinhard Farwig
    Yoshikazu Giga
    Pen-Yuan Hsu
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 1495 - 1511
  • [28] Long-time asymptotics of axisymmetric Navier–Stokes equations in critical spaces
    Yanlin Liu
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [29] INTERIOR AND BOUNDARY REGULARITY FOR THE NAVIER-STOKES EQUATIONS IN THE CRITICAL LEBESGUE SPACES
    Dong, Hongjie
    Wang, Kunrui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (09) : 5289 - 5323
  • [30] GLOBAL SOLUTIONS TO CHEMOTAXIS-NAVIER-STOKES EQUATIONS IN CRITICAL BESOV SPACES
    Yang, Minghua
    Fu, Zunwei
    Sun, Jinyi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 3427 - 3460