On the Wellposedness of Three-Dimensional Inhomogeneous Navier–Stokes Equations in the Critical Spaces

被引:4
|
作者
Hammadi Abidi
Guilong Gui
Ping Zhang
机构
[1] Faculté des Sciences de Tunis Campus Universitaire,Dértement de Mathématiques
[2] Jiangsu University,Department of Mathematics
[3] The Chinese University of Hong Kong,The Institute of Mathematical Sciences
[4] Chinese Academy of Sciences,Academy of Mathematics & Systems Science and Hua Loo
关键词
Besov Space; Stokes System; Critical Space; Unique Global Solution; Global Smooth Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the local wellposedness of three-dimensional incompressible inhomogeneous Navier–Stokes equations with initial data in the critical Besov spaces, without assumptions of small density variation. Furthermore, if the initial velocity field is small enough in the critical Besov space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot B^{1/2}_{2,1}(\mathbb{R}^3)}$$\end{document} , this system has a unique global solution.
引用
收藏
页码:189 / 230
页数:41
相关论文
共 50 条
  • [1] On the Wellposedness of Three-Dimensional Inhomogeneous Navier-Stokes Equations in the Critical Spaces
    Abidi, Hammadi
    Gui, Guilong
    Zhang, Ping
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (01) : 189 - 230
  • [2] Inhomogeneous Boundary Value Problems for the Three-Dimensional Evolutionary Navier—Stokes Equations
    A. V. Fursikov
    M. D. Gunzburger
    L. S. Hou
    [J]. Journal of Mathematical Fluid Mechanics, 2002, 4 : 45 - 75
  • [3] WELLPOSEDNESS OF THE KELLER-SEGEL NAVIER-STOKES EQUATIONS IN THE CRITICAL BESOV SPACES
    Choe, Hi Jun
    Lkhagvasuren, Bataa
    Yang, Minsuk
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (06) : 2453 - 2464
  • [4] Inhomogeneous Boundary Value Problems for the Three-Dimensional Evolutionary Navier-Stokes Equations
    Fursikov, A. V.
    Gunzburger, M. D.
    Hou, L. S.
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2002, 4 (01) : 45 - 75
  • [5] On the local wellposedness of Three-Dimensional MHD system in the critical spaces
    Zi-lai Li
    Mei Wang
    J. Yang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 607 - 622
  • [6] On the Local Wellposedness of Three-dimensional MHD System in the Critical Spaces
    Zi-lai LI
    Mei WANG
    J.YANG
    [J]. Acta Mathematicae Applicatae Sinica, 2015, 31 (03) : 607 - 622
  • [7] On the Local Wellposedness of Three-dimensional MHD System in the Critical Spaces
    Li, Zi-lai
    Wang, Mei
    Yang, J.
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (03): : 607 - 622
  • [8] On Critical Spaces for the Navier–Stokes Equations
    Jan Prüss
    Mathias Wilke
    [J]. Journal of Mathematical Fluid Mechanics, 2018, 20 : 733 - 755
  • [9] Approximate Controllability of Three-Dimensional Navier–Stokes Equations
    Armen Shirikyan
    [J]. Communications in Mathematical Physics, 2006, 266 : 123 - 151
  • [10] Attractors for three-dimensional Navier-Stokes equations
    Capinski, M
    Cutland, NJ
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1966): : 2413 - 2426