Attractors for three-dimensional Navier-Stokes equations

被引:7
|
作者
Capinski, M [1 ]
Cutland, NJ [1 ]
机构
[1] UNIV HULL, DEPT PURE MATH & STAT, KINGSTON UPON HULL HU6 7RX, N HUMBERSIDE, ENGLAND
关键词
D O I
10.1098/rspa.1997.0129
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For the three-dimensional Navier-Stokes equations we propose two new approaches to the notion of an attractor. They involve multi-valued semiflows constructed via the nonstandard framework used for solving the equations, where even in dimension three we have uniqueness of solution for the corresponding equation.
引用
收藏
页码:2413 / 2426
页数:14
相关论文
共 50 条
  • [1] ATTRACTORS FOR THE THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DAMPING
    Song, Xue-Li
    Hou, Yan-Ren
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (01): : 239 - 252
  • [2] Global attractors for the Navier-Stokes equations of three-dimensional compressible flow
    Feireisl, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (01): : 35 - 39
  • [3] Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping
    Song, Xue-li
    Hou, Yan-ren
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) : 337 - 351
  • [4] GLOBAL ATTRACTORS FOR WEAK SOLUTIONS OF THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS WITH DAMPING
    Pardo, Daniel
    Valero, Jose
    Gimenez, Angel
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 3569 - 3590
  • [5] Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force
    Flandoli F.
    Schmalfuß B.
    [J]. Journal of Dynamics and Differential Equations, 1999, 11 (2) : 355 - 398
  • [6] Pullback D-attractors for three-dimensional Navier-Stokes equations with nonlinear damping
    Song, Xue-li
    Liang, Fei
    Wu, Jian-hua
    [J]. BOUNDARY VALUE PROBLEMS, 2016,
  • [7] Trajectory and global attractors of three-dimensional Navier-Stokes systems
    Vishik, MI
    Chepyzhov, VV
    [J]. MATHEMATICAL NOTES, 2002, 71 (1-2) : 177 - 193
  • [8] Nonequilibrium ensembles for the three-dimensional Navier-Stokes equations
    Margazoglou, G.
    Biferale, L.
    Cencini, M.
    Gallavotti, G.
    Lucarini, V
    [J]. PHYSICAL REVIEW E, 2022, 105 (06)
  • [9] Regularity Criteria for the Three-dimensional Navier-Stokes Equations
    Cao, Chongsheng
    Titi, Edriss S.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) : 2643 - 2661
  • [10] On the study of three-dimensional compressible Navier-Stokes equations
    Abdelwahed, Mohamed
    Bade, Rabe
    Chaker, Hedia
    Hassine, Maatoug
    [J]. BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):