On the Local Wellposedness of Three-dimensional MHD System in the Critical Spaces

被引:0
|
作者
Zi-lai LI [1 ,2 ]
Mei WANG [1 ]
J.YANG [1 ]
机构
[1] School of Mathematics, Northwest University
[2] School of Mathematics and Information Science, Henan Polytechnic University
基金
中国国家自然科学基金;
关键词
Magneto-hydrodynamics system; Littlewood-Paley theory; critical spaces;
D O I
暂无
中图分类号
O361.3 [磁流体力学];
学科分类号
080103 ;
摘要
In this article, we prove the local wellposedness of Three-Dimensional incompressible magnetohydrodynamic system(MHD) with initial data in the critical spaces, without assumptions of small density variation.
引用
收藏
页码:607 / 622
页数:16
相关论文
共 50 条
  • [1] On the local wellposedness of Three-Dimensional MHD system in the critical spaces
    Zi-lai Li
    Mei Wang
    J. Yang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 607 - 622
  • [2] On the Local Wellposedness of Three-dimensional MHD System in the Critical Spaces
    Li, Zi-lai
    Wang, Mei
    Yang, J.
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (03): : 607 - 622
  • [3] On the Wellposedness of Three-Dimensional Inhomogeneous Navier–Stokes Equations in the Critical Spaces
    Hammadi Abidi
    Guilong Gui
    Ping Zhang
    [J]. Archive for Rational Mechanics and Analysis, 2012, 204 : 189 - 230
  • [4] On the Wellposedness of Three-Dimensional Inhomogeneous Navier-Stokes Equations in the Critical Spaces
    Abidi, Hammadi
    Gui, Guilong
    Zhang, Ping
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (01) : 189 - 230
  • [5] Local mild solutions to three-dimensional magnetohydrodynamic system in Morrey spaces
    Zeng, Zirong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5326 - 5339
  • [6] Local three-dimensional MHD stability in equilibrium optimized coordinates
    Cooper, WA
    [J]. PLASMA PHYSICS REPORTS, 2000, 26 (08) : 641 - 645
  • [7] Global migrations and reterritorialization of local spaces: a three-dimensional approach
    Entrena-Duran, Francisco
    [J]. PAPELES DE POBLACION, 2012, 18 (72): : 9 - 38
  • [8] Three-dimensional Alexandrov spaces with local isometric circle actions
    Galaz-Garcia, Fernando
    Nunez-Zimbron, Jesus
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2020, 60 (03) : 801 - 823
  • [9] Anisotropic three-dimensional MHD turbulence
    Matthaeus, WH
    Ghosh, S
    Oughton, S
    Roberts, DA
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A4) : 7619 - 7629
  • [10] Anisotropy in three-dimensional MHD turbulence
    Bigot, B.
    Galtier, S.
    Politano, H.
    [J]. ADVANCES IN TURBULENCE XI, 2007, 117 : 26 - 28