A bridge connecting Lebesgue and Morrey spaces via Riesz norms

被引:0
|
作者
Jin Tao
Dachun Yang
Wen Yuan
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
关键词
Euclidean space; Cube; Lebesgue space; Morrey space; John–Nirenberg–Campanato space; Duality; Riesz–Morrey space; 42B35; 42B30; 46E30; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, via combining Riesz norms with Morrey norms, the authors introduce and study the so-called Riesz–Morrey space, which differs from the John–Nirenberg–Campanato space in subtracting integral means. These spaces provide a bridge connecting both Lebesgue spaces and Morrey spaces which prove to be the endpoint spaces of Riesz–Morrey spaces. Moreover, the authors introduce a block-type space which proves to be the predual space of the Riesz–Morrey space.
引用
下载
收藏
相关论文
共 50 条
  • [31] Riesz potential in generalized Morrey spaces on the Heisenberg group
    Guliyev V.S.
    Eroglu A.
    Mammadov Y.Y.
    Journal of Mathematical Sciences, 2013, 189 (3) : 365 - 382
  • [32] RIESZ FRACTIONAL INTEGRALS IN GRAND LEBESGUE SPACES ON Rn
    Samko, Stefan
    Umarkhadzhiev, Salaudin
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (03) : 608 - 624
  • [33] New Gaussian Riesz transforms on variable Lebesgue spaces
    E. Dalmasso
    R. Scotto
    Analysis Mathematica, 2022, 48 : 39 - 67
  • [34] New Gaussian Riesz transforms on variable Lebesgue spaces
    Dalmasso, E.
    Scotto, R.
    ANALYSIS MATHEMATICA, 2022, 48 (01) : 39 - 67
  • [35] Riesz Fractional Integrals in Grand Lebesgue Spaces on ℝn
    Stefan Samko
    Salaudin Umarkhadzhiev
    Fractional Calculus and Applied Analysis, 2016, 19 : 608 - 624
  • [36] Bochner-Riesz operators in grand lebesgue spaces
    Formica, Maria Rosaria
    Ostrovsky, Eugeny
    Sirota, Leonid
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (02)
  • [37] Riesz transforms on variable Lebesgue spaces with Gaussian measure
    Dalmasso, Estefania
    Scotto, Roberto
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (05) : 403 - 420
  • [38] ON ISOMORPHISM OF TWO BASES IN MORREY-LEBESGUE TYPE SPACES
    Guliyeva, Fatima A.
    Abdullayeva, Rubaba H.
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2016, 4 (01): : 79 - 90
  • [39] Norms of projectors onto spaces with Riesz bases
    Von Golitschek, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 119 (1-2) : 209 - 221
  • [40] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Victor I. Burenkov
    Amiran Gogatishvili
    Vagif S. Guliyev
    Rza Ch. Mustafayev
    Potential Analysis, 2011, 35 : 67 - 87