A bridge connecting Lebesgue and Morrey spaces via Riesz norms

被引:0
|
作者
Jin Tao
Dachun Yang
Wen Yuan
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
关键词
Euclidean space; Cube; Lebesgue space; Morrey space; John–Nirenberg–Campanato space; Duality; Riesz–Morrey space; 42B35; 42B30; 46E30; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, via combining Riesz norms with Morrey norms, the authors introduce and study the so-called Riesz–Morrey space, which differs from the John–Nirenberg–Campanato space in subtracting integral means. These spaces provide a bridge connecting both Lebesgue spaces and Morrey spaces which prove to be the endpoint spaces of Riesz–Morrey spaces. Moreover, the authors introduce a block-type space which proves to be the predual space of the Riesz–Morrey space.
引用
下载
收藏
相关论文
共 50 条
  • [41] ON THE BOUNDEDNESS OF THE MAXIMAL OPERATOR AND RIESZ POTENTIAL IN THE MODIFIED MORREY SPACES
    Aykol, Canay
    Yildirim, M. Esra
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2014, 63 (02): : 1 - 11
  • [42] Norms of projectors onto spaces with Riesz bases
    Golitschek, M.V.
    Journal of Computational and Applied Mathematics, 2000, 119 (01) : 209 - 221
  • [43] Riesz type potential operators in generalized grand Morrey spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Rafeiro, Humberto
    GEORGIAN MATHEMATICAL JOURNAL, 2013, 20 (01) : 43 - 64
  • [44] Boundedness of the Riesz potential in central Morrey-Orlicz spaces
    Burtseva, Evgeniya
    Maligranda, Lech
    Matsuoka, Katsuo
    POSITIVITY, 2022, 26 (01)
  • [45] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Burenkov, Victor I.
    Gogatishvili, Amiran
    Guliyev, Vagif S.
    Mustafayev, Rza Ch
    POTENTIAL ANALYSIS, 2011, 35 (01) : 67 - 87
  • [46] Riesz-Zygmund means and trigonometric approximation in Morrey spaces
    Volosivets, S. S.
    JOURNAL OF ANALYSIS, 2024, : 3277 - 3296
  • [47] Riesz Potential, Marcinkiewicz Integral and Their Commutators on Mixed Morrey Spaces
    Scapellato, Andrea
    FILOMAT, 2020, 34 (03) : 931 - 944
  • [48] BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY TYPE SPACES
    Burenkov, V., I
    Senouci, M. A.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (04):
  • [49] On embeddings of Morrey type spaces between weighted Lebesgue or Stummel spaces with application to Herz spaces
    Rafeiro, Humberto
    Samko, Stefan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (03)
  • [50] Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (7-9) : 671 - 695