Entropy results for Levinson-type inequalities via Green functions and Hermite interpolating polynomial

被引:0
|
作者
Muhammad Adeel
Khuram Ali Khan
Đilda Pečarić
Josip Pečarić
机构
[1] University of Sargodha,Department of Mathematics
[2] University of Central Punjab,Department of Mathematics
[3] University North,Department of Media and Communication
[4] RUDN University,undefined
来源
Aequationes mathematicae | 2022年 / 96卷
关键词
Information theory; Convex functions; Levinson’s Inequality; Primary 26D10; Secondary 26D20;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, Levinson type inequalities involving two types of data points are proved using Green functions and the Hermite interpolating polynomial for the class of n-convex functions. In seek of applications to information theory some estimates for new functionals are obtained, based on f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {f}$$\end{document}-divergence. Moreover, some inequalities involving Shannon entropies are deduced as well.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 50 条
  • [31] New bounds for Shannon, Relative and Mandelbrot entropies via Hermite interpolating polynomial
    Mehmood, Nasir
    Butt, Saad Ihsan
    Pecaric, Dilda
    Pecaric, Josip
    DEMONSTRATIO MATHEMATICA, 2018, 51 (01) : 112 - 130
  • [32] HERMITE-HADAMARD TYPE INEQUALITIES FOR CONFORMABLE INTEGRALS VIA η-CONVEX FUNCTIONS
    Khurshid, Yousaf
    Khan, Muhammad Adil
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (01): : 77 - 90
  • [33] Hermite-Hadamard Type Inequalities For Conformable Integrals Via Preinvex Functions
    Khurshid, Yousaf
    Khan, Muhammad Adil
    APPLIED MATHEMATICS E-NOTES, 2021, 21 : 437 - 450
  • [34] Hermite-Hadamard Type Inequalities for Superquadratic Functions via Fractional Integrals
    Li, Guangzhou
    Chen, Feixiang
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [35] Linear Inequalities via Extension of Montgomery Identity and Weighted Hermite-Hadamard Inequalities with and without Green Functions
    Alamgir, Shaista
    Khan, Asif R.
    Pecaric, Josip E.
    FILOMAT, 2022, 36 (11) : 3593 - 3608
  • [36] Levinson type inequalities for higher order convex functions via Abel-Gontscharoff interpolation
    Adeel, Muhammad
    Khan, Khuram Ali
    Pecaric, Dilda
    Pecaric, Josip
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [37] Hermite-Hadamard and Ostrowski type inequalities via α-exponential type convex functions with applications
    Bakht, Attazar
    Anwar, Matloob
    AIMS MATHEMATICS, 2024, 9 (04): : 9519 - 9535
  • [39] Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions
    Nwaeze, Eze R.
    Khan, Muhammad Adil
    Ahmadian, Ali
    Ahmad, Mohammad Nazir
    Mahmood, Ahmad Kamil
    AIMS MATHEMATICS, 2021, 6 (02): : 1889 - 1904
  • [40] Hermite-Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications
    Butt, Saad Ihsan
    Kashuri, Artion
    Tariq, Muhammad
    Nasir, Jamshed
    Aslam, Adnan
    Gao, Wei
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)