Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions

被引:12
|
作者
Nwaeze, Eze R. [1 ]
Khan, Muhammad Adil [2 ]
Ahmadian, Ali [3 ]
Ahmad, Mohammad Nazir [3 ]
Mahmood, Ahmad Kamil [4 ]
机构
[1] Alabama State Univ, Dept Math & Comp Sci, Montgomery, AL 36101 USA
[2] Univ Peshawar, Dept Math, Peshawar, Pakistan
[3] Natl Univ Malaysia, Inst IR 4 0, Bangi 43600, Selangor, Malaysia
[4] Univ Teknol Petronas, CISD, Ctr High Performance Comp, Seri Iskandar, Perak, Malaysia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 02期
关键词
Hermite-Hadamard; m-polynomial convex; m-polynomial harmonically convex; Riemann-Liouville; Caputo-Fabrizio; INTEGRAL-INEQUALITIES;
D O I
10.3934/math.2021115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is our purpose to establish some new fractional inequalities of the Hermite-Hadamard type for the m-polynomial convex and harmonically convex functions. Our results involve the Caputo-Fabrizio and zeta-Riemann-Liouville fractional integral operators. They generalize, complement and extend existing results in the literature. By taking m >= 2, we deduce loads of new and interesting inequalities. We expect that the thought laid out in this work will provoke advance examinations in this course.
引用
收藏
页码:1889 / 1904
页数:16
相关论文
共 50 条
  • [1] Hermite-Hadamard type inequalities for harmonically (α, m)-convex functions
    Iscan, Imdat
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 381 - 390
  • [2] Hermite-Hadamard Type Inclusions for m-Polynomial Harmonically Convex Interval-Valued Functions
    Nwaeze, Eze R.
    [J]. CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2021, 4 (03): : 260 - 273
  • [3] Hermite-Hadamard type inequalities for harmonically convex functions
    Iscan, Iindat
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (06): : 935 - 942
  • [4] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [5] Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions
    Zhao, Dafang
    Ali, Muhammad Aamir
    Kashuri, Artion
    Budak, Huseyin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [6] Fejer and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions
    Chen, Feixiang
    Wu, Shanhe
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [7] Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions
    Nwaeze, Eze R.
    Khan, Muhammad Adil
    Chu, Yu-Ming
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [8] INEQUALITIES OF HERMITE-HADAMARD TYPE FOR EXTENDED HARMONICALLY (s, m)-CONVEX FUNCTIONS
    He, Chun-Ying
    Xi, Bo-Yan
    Guo, Bai-Ni
    [J]. MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 245 - 258
  • [9] New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions
    Awan, Muhammad Uzair
    Akhtar, Nousheen
    Iftikhar, Sabah
    Noor, Muhammad Aslam
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [10] On the Fractional Hermite-Hadamard Type Inequalities for (α, m)-Logarithmically Convex Functions
    Wang, JinRong
    Liao, Yumei
    Deng, JianHua
    [J]. FILOMAT, 2015, 29 (07) : 1565 - 1580