Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions

被引:12
|
作者
Nwaeze, Eze R. [1 ]
Khan, Muhammad Adil [2 ]
Ahmadian, Ali [3 ]
Ahmad, Mohammad Nazir [3 ]
Mahmood, Ahmad Kamil [4 ]
机构
[1] Alabama State Univ, Dept Math & Comp Sci, Montgomery, AL 36101 USA
[2] Univ Peshawar, Dept Math, Peshawar, Pakistan
[3] Natl Univ Malaysia, Inst IR 4 0, Bangi 43600, Selangor, Malaysia
[4] Univ Teknol Petronas, CISD, Ctr High Performance Comp, Seri Iskandar, Perak, Malaysia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 02期
关键词
Hermite-Hadamard; m-polynomial convex; m-polynomial harmonically convex; Riemann-Liouville; Caputo-Fabrizio; INTEGRAL-INEQUALITIES;
D O I
10.3934/math.2021115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is our purpose to establish some new fractional inequalities of the Hermite-Hadamard type for the m-polynomial convex and harmonically convex functions. Our results involve the Caputo-Fabrizio and zeta-Riemann-Liouville fractional integral operators. They generalize, complement and extend existing results in the literature. By taking m >= 2, we deduce loads of new and interesting inequalities. We expect that the thought laid out in this work will provoke advance examinations in this course.
引用
收藏
页码:1889 / 1904
页数:16
相关论文
共 50 条
  • [41] Hermite-Hadamard type inequalities for the m- and (α, m)-geometrically convex functions
    Xi, Bo-Yan
    Bai, Rui-Fang
    Qi, Feng
    [J]. AEQUATIONES MATHEMATICAE, 2012, 84 (03) : 261 - 269
  • [42] HERMITE-HADAMARD TYPE INEQUALITIES FOR PRODUCT OF HARMONICALLY CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Kunt, Mehmet
    Iscan, Imdat
    Yazici, Nazli
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (04): : 74 - 82
  • [43] Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals
    Sun, Wenbing
    Xu, Rui
    [J]. AIMS MATHEMATICS, 2021, 6 (10): : 10679 - 10695
  • [44] Hermite-Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions
    Bai, Rui-Fang
    Qi, Feng
    Xi, Bo-Yan
    [J]. FILOMAT, 2013, 27 (01) : 1 - 7
  • [45] New Conformable Fractional Integral Inequalities of Hermite-Hadamard Type for Convex Functions
    Mohammed, Pshtiwan Othman
    Hamasalh, Faraidun Kadir
    [J]. SYMMETRY-BASEL, 2019, 11 (02):
  • [46] On some inequalities related to fractional Hermite-Hadamard type for differentiable convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Kiris, Mehmet Eyup
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 222 - 233
  • [47] New Riemann–Liouville fractional Hermite–Hadamard type inequalities for harmonically convex functions
    Zeynep Şanlı
    Mehmet Kunt
    Tuncay Köroğlu
    [J]. Arabian Journal of Mathematics, 2020, 9 : 431 - 441
  • [48] NEW INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR OPERATOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS
    Wang, Shuhong
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (04) : 744 - 753
  • [49] Hermite-Hadamard Type Inequalities Obtained via Fractional Integral for Differentiable m-Convex and (alpha,m)-Convex Functions
    Set, Erhan
    Karatas, Suleyman Sami
    Khan, Muhammad Adil
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS, 2016,
  • [50] ON SOME NEW FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX AND CO-ORDINATED CONVEX FUNCTIONS
    Ali, Muhammad Aamir
    Budak, Huseyin
    Sakhi, Sadia
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (04): : 955 - 971