Hermite-Hadamard type inequalities for harmonically convex functions

被引:1
|
作者
Iscan, Iindat [1 ]
机构
[1] Giresun Univ, Fac Arts & Sci, Dept Math, TR-28100 Gire, Turkey
来源
关键词
Harmonically convex function; Hermite-Hadamard type inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author introduces the concept of harmonically convex functions and establishes some Hermite-Hadamard type inequalities of these classes of functions.
引用
收藏
页码:935 / 942
页数:8
相关论文
共 50 条
  • [1] Hermite-Hadamard type inequalities for harmonically (α, m)-convex functions
    Iscan, Imdat
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 381 - 390
  • [2] Fejer and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions
    Chen, Feixiang
    Wu, Shanhe
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [3] Hermite-Hadamard type inequalities for a new class of harmonically convex functions
    Olanipekun, Peter Olamide
    Mogbademu, Adesanmi A.
    Dragomir, Sever Silvestru
    [J]. NOTE DI MATEMATICA, 2018, 38 (01): : 23 - 33
  • [4] Mappings related to Hermite-Hadamard type inequalities for harmonically convex functions
    Latif, Muhammad Amer
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2022, 54 (11): : 665 - 678
  • [5] New Hermite-Hadamard type Inequalities for Harmonically-Convex Functions
    Latif, Muhammad Amer
    Hussain, Sabir
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (06): : 1 - 16
  • [6] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [7] INEQUALITIES OF HERMITE-HADAMARD TYPE FOR EXTENDED HARMONICALLY (s, m)-CONVEX FUNCTIONS
    He, Chun-Ying
    Xi, Bo-Yan
    Guo, Bai-Ni
    [J]. MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 245 - 258
  • [8] Some Hermite-Hadamard Type Inequalities for Harmonically s-Convex Functions
    Chen, Feixiang
    Wu, Shanhe
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [9] Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions
    Zhao, Dafang
    Ali, Muhammad Aamir
    Kashuri, Artion
    Budak, Huseyin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [10] Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions
    Nwaeze, Eze R.
    Khan, Muhammad Adil
    Ahmadian, Ali
    Ahmad, Mohammad Nazir
    Mahmood, Ahmad Kamil
    [J]. AIMS MATHEMATICS, 2021, 6 (02): : 1889 - 1904