INEQUALITIES OF HERMITE-HADAMARD TYPE FOR EXTENDED HARMONICALLY (s, m)-CONVEX FUNCTIONS

被引:3
|
作者
He, Chun-Ying [1 ,2 ]
Xi, Bo-Yan [2 ]
Guo, Bai-Ni [3 ]
机构
[1] Hulunbuir Univ, Coll Math & Stat, Hailaer 021008, Inner Mongolia, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Math & Phys, Tongliao 028043, Inner Mongolia, Peoples R China
[3] Henan Polytech Univ, Sch Math & Informat, Jiaozuo 454010, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
extended harmonically (s; m)-convex function; integral inequality; Hermite-Hadamard type; hypergeometric function; S-CONVEX FUNCTIONS; DIFFERENTIABLE MAPPINGS; (ALPHA;
D O I
10.18514/MMN.2021.3080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors introduce a new notion "extended harmonically (s, m)-convex function" and establish some integral inequalities of the Hermite-Hadamard type for extended harmonically (s, m)-convex functions in terms of hypergeometric functions.
引用
收藏
页码:245 / 258
页数:14
相关论文
共 50 条
  • [1] Hermite-Hadamard type inequalities for harmonically (α, m)-convex functions
    Iscan, Imdat
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 381 - 390
  • [2] Hermite-Hadamard type inequalities for harmonically convex functions
    Iscan, Iindat
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (06): : 935 - 942
  • [3] Some Hermite-Hadamard type inequalities for harmonically extended s-convex functions
    Li, Chun-Long
    Wu, Shan-He
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 4025 - 4033
  • [4] Fejer and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions
    Chen, Feixiang
    Wu, Shanhe
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [5] Some Hermite-Hadamard Type Inequalities for Harmonically s-Convex Functions
    Chen, Feixiang
    Wu, Shanhe
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [6] Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions
    Nwaeze, Eze R.
    Khan, Muhammad Adil
    Ahmadian, Ali
    Ahmad, Mohammad Nazir
    Mahmood, Ahmad Kamil
    [J]. AIMS MATHEMATICS, 2021, 6 (02): : 1889 - 1904
  • [7] Hermite-Hadamard type inequalities for a new class of harmonically convex functions
    Olanipekun, Peter Olamide
    Mogbademu, Adesanmi A.
    Dragomir, Sever Silvestru
    [J]. NOTE DI MATEMATICA, 2018, 38 (01): : 23 - 33
  • [8] Mappings related to Hermite-Hadamard type inequalities for harmonically convex functions
    Latif, Muhammad Amer
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2022, 54 (11): : 665 - 678
  • [9] New Hermite-Hadamard type Inequalities for Harmonically-Convex Functions
    Latif, Muhammad Amer
    Hussain, Sabir
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (06): : 1 - 16
  • [10] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244