Entropy results for Levinson-type inequalities via Green functions and Hermite interpolating polynomial

被引:0
|
作者
Muhammad Adeel
Khuram Ali Khan
Đilda Pečarić
Josip Pečarić
机构
[1] University of Sargodha,Department of Mathematics
[2] University of Central Punjab,Department of Mathematics
[3] University North,Department of Media and Communication
[4] RUDN University,undefined
来源
Aequationes mathematicae | 2022年 / 96卷
关键词
Information theory; Convex functions; Levinson’s Inequality; Primary 26D10; Secondary 26D20;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, Levinson type inequalities involving two types of data points are proved using Green functions and the Hermite interpolating polynomial for the class of n-convex functions. In seek of applications to information theory some estimates for new functionals are obtained, based on f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {f}$$\end{document}-divergence. Moreover, some inequalities involving Shannon entropies are deduced as well.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 50 条
  • [41] Hermite-Hadamard type inequalities for fractional integrals via Green's function
    Khan, Muhammad Adil
    Iqbal, Arshad
    Suleman, Muhammad
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [42] Hermite–Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications
    Saad Ihsan Butt
    Artion Kashuri
    Muhammad Tariq
    Jamshed Nasir
    Adnan Aslam
    Wei Gao
    Advances in Difference Equations, 2020
  • [43] Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals
    Iscan, Imdat
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 355 - 366
  • [44] On Hermite-Hadamard-Fejer-Type Inequalities for η-Convex Functions via Quantum Calculus
    Arunrat, Nuttapong
    Nonlaopon, Kamsing
    Budak, Hueseyin
    MATHEMATICS, 2023, 11 (15)
  • [45] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [46] A Comprehensive Analysis of Hermite-Hadamard Type Inequalities via Generalized Preinvex Functions
    Tariq, Muhammad
    Ahmad, Hijaz
    Budak, Hueseyin
    Sahoo, Soubhagya Kumar
    Sitthiwirattham, Thanin
    Reunsumrit, Jiraporn
    AXIOMS, 2021, 10 (04)
  • [47] Hermite-Hadamard Type Inequalities via Exponentially (p, h)-Convex Functions
    Mehreen, N.
    Anwar, M.
    IEEE ACCESS, 2020, 8 : 37589 - 37595
  • [48] HERMITE-HADAMARD TYPE INEQUALITIES AND RELATED INEQUALITIES FOR SUBADDITIVE FUNCTIONS
    Sarikaya, Mehmet Zeki
    Ali, Muhammad Aamir
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 929 - 937
  • [49] Hermite-Hadamard type inequalities for subadditive functions
    Kadakal, Huriye
    AIMS MATHEMATICS, 2020, 5 (02): : 930 - 939
  • [50] Ostrowski and Hermite-Hadamard type inequalities via (α - s) exponential type convex functions with applications
    Bakht, Attazar
    Anwar, Matloob
    AIMS MATHEMATICS, 2024, 9 (10): : 28130 - 28149