Poincaré duality for algebraic de rham cohomology

被引:0
|
作者
Francesco Baldassarri
Maurizio Cailotto
Luisa Fiorot
机构
[1] University of Padova,Dept. of Pure and Appl. Mathematics
来源
manuscripta mathematica | 2004年 / 114卷
关键词
Opposite Direction; Compact Support; Cohomology Group; Characteristic Zero; Canonical Morphism;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss in some detail the algebraic notion of De Rham cohomology with compact supports for singular schemes over a field of characteristic zero. We prove Poincaré duality with respect to De Rham homology as defined by Hartshorne [H.75], so providing a generalization of some results of that paper to the non proper case. In order to do this, we work in the setting of the categories introduced by Herrera and Lieberman [HL], and we interpret our cohomology groups as hyperext groups. We exhibit canonical morphisms of ‘‘cospecialization’’ from complex-analytic De Rham (resp. rigid) cohomology groups with compact supports to the algebraic ones. These morphisms, together with the ‘‘specialization’’ morphisms [H.75, IV.1.2] (resp. [BB, 1]) going in the opposite direction, are shown to be compatible with our algebraic Poincaré pairing and the analogous complex-analytic (resp. rigid) one (resp. [B.97, 3.2]).
引用
收藏
页码:61 / 116
页数:55
相关论文
共 50 条
  • [31] A spectral sequence for de Rham cohomology
    Xie, Bingyong
    ACTA ARITHMETICA, 2011, 149 (03) : 245 - 263
  • [32] ON DE RHAM AND DOLBEAULT COHOMOLOGY OF SOLVMANIFOLDS
    Console, S.
    Fino, A.
    Kasuya, H.
    TRANSFORMATION GROUPS, 2016, 21 (03) : 653 - 680
  • [33] On quantum de Rham cohomology theory
    Cao, HD
    Zhou, J
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 5 : 24 - 34
  • [34] De Rham cohomology of rigid spaces
    Grosse-Klönne, E
    MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (02) : 223 - 240
  • [35] De Rham cohomology of rigid spaces
    Elmar Große-Klönne
    Mathematische Zeitschrift, 2004, 247 : 223 - 240
  • [36] DE RHAM COHOMOLOGY OF AN ANALYTIC SPACE
    BLOOM, T
    HERRERA, M
    INVENTIONES MATHEMATICAE, 1969, 7 (04) : 275 - &
  • [37] De Rham cohomology for Log Schemi
    Fornasiero, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2005, 8A (03): : 537 - 540
  • [38] DE RHAM COHOMOLOGY AND CONDUCTORS OF CURVES
    BLOCH, S
    DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) : 295 - 308
  • [39] Local holomorphic De Rham cohomology
    Du, Rong
    Yau, Stephen
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2010, 18 (02) : 365 - 374
  • [40] DE RHAM COHOMOLOGY OF FLAG VARIETIES
    MARLIN, R
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1977, 105 (01): : 89 - 96