De Rham cohomology of rigid spaces

被引:17
|
作者
Grosse-Klönne, E [1 ]
机构
[1] Univ Munster, Inst Math, D-48149 Munster, Germany
关键词
D O I
10.1007/s00209-003-0544-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define de Rham cohomology groups for rigid spaces over non-archimedean fields of characteristic zero, based on the notion of dagger space introduced in [12]. We establish some functorial properties and a finiteness result, and discuss the relation to the rigid cohomology as defined by P. Berthelot [2].
引用
收藏
页码:223 / 240
页数:18
相关论文
共 50 条
  • [1] De Rham cohomology of rigid spaces
    Elmar Große-Klönne
    [J]. Mathematische Zeitschrift, 2004, 247 : 223 - 240
  • [2] Exponentially twisted de Rham cohomology and rigid cohomology
    Li, Shizhang
    Zhang, Dingxin
    [J]. MATHEMATISCHE ANNALEN, 2024, 390 (01) : 639 - 670
  • [3] Finiteness of de Rham cohomology in rigid analysis
    Grosse-Klönne, E
    [J]. DUKE MATHEMATICAL JOURNAL, 2002, 113 (01) : 57 - 91
  • [4] De Rham cohomology of diffeological spaces and foliations
    Hector, G.
    Macias-Virgos, E.
    Sanmartin-Carbon, E.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2011, 21 (3-4): : 212 - 220
  • [5] Rigid Cohomology and de Rham-Witt Complexes
    Berthelot, Pierre
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2012, 128 : 287 - 344
  • [6] De Rham cohomology of configuration spaces with Poisson measure
    Albeverio, S
    Daletskii, A
    Lytvynov, E
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 185 (01) : 240 - 273
  • [7] LONG EXACT SEQUENCES FOR DE RHAM COHOMOLOGY OF DIFFEOLOGICAL SPACES
    Haraguchi, Tadayuki
    [J]. KYUSHU JOURNAL OF MATHEMATICS, 2014, 68 (02) : 333 - 345
  • [8] LOGARITHMIC DE RHAM COMPARISON FOR OPEN RIGID SPACES
    Li, Shizhang
    Pan, Xuanyu
    [J]. FORUM OF MATHEMATICS SIGMA, 2019, 7
  • [9] De Rham cohomology for supervarieties
    Polishchuk, Alexander
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2024, 10 (02)
  • [10] On twisted de Rham cohomology
    Adolphson, A
    Sperber, S
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1997, 146 : 55 - 81