Poincaré duality for algebraic de rham cohomology

被引:0
|
作者
Francesco Baldassarri
Maurizio Cailotto
Luisa Fiorot
机构
[1] University of Padova,Dept. of Pure and Appl. Mathematics
来源
manuscripta mathematica | 2004年 / 114卷
关键词
Opposite Direction; Compact Support; Cohomology Group; Characteristic Zero; Canonical Morphism;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss in some detail the algebraic notion of De Rham cohomology with compact supports for singular schemes over a field of characteristic zero. We prove Poincaré duality with respect to De Rham homology as defined by Hartshorne [H.75], so providing a generalization of some results of that paper to the non proper case. In order to do this, we work in the setting of the categories introduced by Herrera and Lieberman [HL], and we interpret our cohomology groups as hyperext groups. We exhibit canonical morphisms of ‘‘cospecialization’’ from complex-analytic De Rham (resp. rigid) cohomology groups with compact supports to the algebraic ones. These morphisms, together with the ‘‘specialization’’ morphisms [H.75, IV.1.2] (resp. [BB, 1]) going in the opposite direction, are shown to be compatible with our algebraic Poincaré pairing and the analogous complex-analytic (resp. rigid) one (resp. [B.97, 3.2]).
引用
下载
收藏
页码:61 / 116
页数:55
相关论文
共 50 条
  • [21] de Rham cohomology of the supermanifolds and superstring BRST cohomology
    Belopolsky, A
    PHYSICS LETTERS B, 1997, 403 (1-2) : 47 - 50
  • [22] On endomorphisms of the de Rham cohomology functor
    Li, Shizhang
    Mondal, Shubhodip
    GEOMETRY & TOPOLOGY, 2024, 28 (02) : 759 - 802
  • [23] Exponentially twisted de Rham cohomology and rigid cohomology
    Li, Shizhang
    Zhang, Dingxin
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 639 - 670
  • [24] De Rham cohomology of the supermanifolds and superstring BRST cohomology
    Belopolsky, A.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 403 (1-2):
  • [25] DE RHAM COHOMOLOGY OF WHITNEY PRESTRATIFICATIONS
    VERONA, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (18): : 1340 - &
  • [26] De Rham Cohomology and Integration in Manifolds
    A. B. Sossinsky
    Mathematical Notes, 2020, 107 : 1034 - 1037
  • [27] ON DE RHAM AND DOLBEAULT COHOMOLOGY OF SOLVMANIFOLDS
    S. CONSOLE
    A. FINO
    H. KASUYA
    Transformation Groups, 2016, 21 : 653 - 680
  • [28] Dwork cohomology, de Rham cohomology, and hypergeometric functions
    Adolphson, A
    Sperber, S
    AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (02) : 319 - 348
  • [29] de Rham cohomology of local cohomology modules II
    Tony J. Puthenpurakal
    Rakesh B. T. Reddy
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2019, 60 : 77 - 94
  • [30] On approximations of the de Rham complex and their cohomology
    Bavula, V. V.
    Akcin, H. Melis Tekin
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (04) : 1447 - 1463