Machine-learning correction to density-functional crystal structure optimization

被引:0
|
作者
Robert Hussein
Jonathan Schmidt
Tomás Barros
Miguel A. L. Marques
Silvana Botti
机构
[1] Friedrich-Schiller-Universität Jena,Institut für Festkörpertheorie und
[2] European Theoretical Spectroscopy Facility,optik
[3] Martin-Luther-Universität Halle-Wittenberg,Institut für Physik
来源
MRS Bulletin | 2022年 / 47卷
关键词
Machine learning; Crystallographic structure; Predictive;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:765 / 771
页数:6
相关论文
共 50 条
  • [31] Use of low-fidelity models with machine-learning error correction for well placement optimization
    Tang, Haoyu
    Durlofsky, Louis J.
    COMPUTATIONAL GEOSCIENCES, 2022, 26 (05) : 1189 - 1206
  • [32] Use of low-fidelity models with machine-learning error correction for well placement optimization
    Haoyu Tang
    Louis J. Durlofsky
    Computational Geosciences, 2022, 26 : 1189 - 1206
  • [33] Optimization of Gaussian basis sets for density-functional calculations
    Ctr. for Compl. Materials Science, Naval Research Laboratory, Washington, DC 20375, United States
    Phys Rev A, 4 (2840-2847):
  • [34] Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning
    Kranz, Julian J.
    Kubillus, Maximilian
    Ramakrishnan, Raghunathan
    von Lilienfeld, O. Anatole
    Elstner, Marcus
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (05) : 2341 - 2352
  • [35] A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search
    Kang Xia
    Hao Gao
    Cong Liu
    Jianan Yuan
    Jian Sun
    Hui-Tian Wang
    Dingyu Xing
    Science Bulletin, 2018, 63 (13) : 817 - 824
  • [36] Optimization of Gaussian basis sets for density-functional calculations
    Porezag, D
    Pederson, MR
    PHYSICAL REVIEW A, 1999, 60 (04): : 2840 - 2847
  • [37] Machine learning exchange-correlation potential in time-dependent density-functional theory
    Suzuki, Yasumitsu
    Nagai, Ryo
    Haruyama, Jun
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [38] A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search
    Xia, Kang
    Gao, Hao
    Liu, Cong
    Yuan, Jianan
    Sun, Jian
    Wang, Hui-Tian
    Xing, Dingyu
    SCIENCE BULLETIN, 2018, 63 (13) : 817 - 824
  • [39] Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW
    Golze, Dorothea
    Hirvensalo, Markus
    Hernandez-Leon, Patricia
    Aarva, Anja
    Etula, Jarkko
    Susi, Toma
    Rinke, Patrick
    Laurila, Tomi
    Caro, Miguel A.
    CHEMISTRY OF MATERIALS, 2022, 34 (14) : 6240 - 6254
  • [40] Assessment of XCMS Optimization Methods with Machine-Learning Performance
    Lassen, Johan
    Nielsen, Kirstine Lykke
    Johannsen, Mogens
    Villesen, Palle
    ANALYTICAL CHEMISTRY, 2021, 93 (40) : 13459 - 13466