Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning

被引:46
|
作者
Kranz, Julian J. [1 ]
Kubillus, Maximilian [1 ]
Ramakrishnan, Raghunathan [3 ,4 ,5 ]
von Lilienfeld, O. Anatole [3 ,4 ]
Elstner, Marcus [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, Inst Phys Chem, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Biol Interfaces IBG 2, D-76131 Karlsruhe, Germany
[3] Univ Basel, Inst Phys Chem, Klingelbergstr 80, CH-4056 Basel, Switzerland
[4] Univ Basel, Dept Chem, Natl Ctr Computat Design & Discovery Novel Mat MA, Klingelbergstr 80, CH-4056 Basel, Switzerland
[5] Tata Inst Fundamental Res, Ctr Interdisciplinary Sci, 21 Brundavan Colony, Hyderabad 500075, Andhra Pradesh, India
基金
瑞士国家科学基金会;
关键词
DFTB; PARAMETERIZATION; COMPLEX;
D O I
10.1021/acs.jctc.7b00933
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We combine the approximate density-functional tight-binding (DFTB) method with unsupervised machine learning. This allows us to improve transferability and accuracy, make use of large quantum chemical data sets for the parametrization, and efficiently automatize the parametrization process of DFTB. For this purpose, generalized pair-potentials are introduced, where the chemical environment is included during the learning process, leading to more specific effective two-body potentials. We train on energies and forces of equilibrium and nonequilibrium structures of 2100 molecules, and test on similar to 130 000 organic molecules containing O, N, C, H, and F atoms. Atomization energies of the reference method can be reproduced within an error of similar to 2.6 kcal/mol, indicating drastic improvement over standard DFTB.
引用
收藏
页码:2341 / 2352
页数:12
相关论文
共 50 条
  • [1] Learning to Use the Force: Fitting Repulsive Potentials in Density-Functional Tight-Binding with Gaussian Process Regression
    Panosetti, Chiara
    Engelmann, Artur
    Nemec, Lydia
    Reuter, Karsten
    Margraf, Johannes T.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (04) : 2181 - 2191
  • [2] Density-Functional Tight-Binding Parameters for Bulk Zirconium: A Case Study for Repulsive Potentials
    Hutama, Aulia Sukma
    Chou, Chien-Pin
    Nishimura, Yoshifumi
    Witek, Henryk A.
    Irle, Stephan
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (10): : 2184 - 2196
  • [3] Density-functional tight-binding for beginners
    Koskinen, Pekka
    Makinen, Ville
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 47 (01) : 237 - 253
  • [4] Development of Density-Functional Tight-Binding Repulsive Potentials for Bulk Zirconia using Particle Swarm Optimization Algorithm
    Hutama, Aulia S.
    Nishimura, Yoshifumi
    Chou, Chien-Pin
    Irle, Stephan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017), 2017, 1906
  • [5] Density-Functional Tight-Binding for Platinum Clusters and Bulk: Electronic vs Repulsive Parameters
    Lee, Ka Hung
    Van Quan Vuong
    Fung, Victor
    Jiang, De-en
    Irle, Stephan
    MRS ADVANCES, 2019, 4 (33-34) : 1821 - 1832
  • [6] Density-Functional Tight-Binding for Platinum Clusters and Bulk: Electronic vs Repulsive Parameters
    Ka Hung Lee
    Quan Van Vuong
    Victor Fung
    De-en Jiang
    Stephan Irle
    MRS Advances, 2019, 4 : 1821 - 1832
  • [7] Partition Analysis for Density-Functional Tight-Binding
    Fedorov, Dmitri G.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (49): : 10346 - 10358
  • [8] TIGHT-BINDING MODELS AND DENSITY-FUNCTIONAL THEORY
    MATTHEW, W
    FOULKES, C
    HAYDOCK, R
    PHYSICAL REVIEW B, 1989, 39 (17) : 12520 - 12536
  • [9] Density-functional, density-functional tight-binding, and wave function calculations on biomolecular systems
    Kubar, Tomas
    Jurecka, Petr
    Cerny, Jiri
    Rezac, Jan
    Otyepka, Michal
    Valdes, Haydee
    Hobza, Pavel
    JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26): : 5642 - 5647
  • [10] Density-Functional Based Tight-Binding: an Approximate DFT Method
    Oliveira, Augusto F.
    Seifert, Gotthard
    Heine, Thomas
    Duarte, Helio A.
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2009, 20 (07) : 1193 - 1205