Development of Density-Functional Tight-Binding Repulsive Potentials for Bulk Zirconia using Particle Swarm Optimization Algorithm

被引:3
|
作者
Hutama, Aulia S. [1 ,2 ]
Nishimura, Yoshifumi [3 ]
Chou, Chien-Pin [3 ]
Irle, Stephan [1 ,2 ]
机构
[1] Nagoya Univ, Dept Chem, Grad Sch Sci, Nagoya, Aichi, Japan
[2] Nagoya Univ, Inst Transformat Biomol WPI ITbM, Nagoya, Aichi, Japan
[3] Waseda Univ, Res Inst Sci & Engn, Tokyo, Japan
关键词
D O I
10.1063/1.5012294
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We report the preliminary results of the development of density-functional tight-binding (DFTB) repulsive potentials for the Zr - O element pair. The repulsive potentials were created using a computer code based on the particle swarm optimization. The potentials were tested on a set of systems for high temperature phases of bulk ZrO2, namely cubic and tetragonal. The potential sets were primarily developed for simulation of zirconia phase transitions at elevated temperatures.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Density-Functional Tight-Binding Parameters for Bulk Zirconium: A Case Study for Repulsive Potentials
    Hutama, Aulia Sukma
    Chou, Chien-Pin
    Nishimura, Yoshifumi
    Witek, Henryk A.
    Irle, Stephan
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (10): : 2184 - 2196
  • [2] Density-Functional Tight-Binding for Platinum Clusters and Bulk: Electronic vs Repulsive Parameters
    Lee, Ka Hung
    Van Quan Vuong
    Fung, Victor
    Jiang, De-en
    Irle, Stephan
    MRS ADVANCES, 2019, 4 (33-34) : 1821 - 1832
  • [3] Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning
    Kranz, Julian J.
    Kubillus, Maximilian
    Ramakrishnan, Raghunathan
    von Lilienfeld, O. Anatole
    Elstner, Marcus
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (05) : 2341 - 2352
  • [4] Density-Functional Tight-Binding for Platinum Clusters and Bulk: Electronic vs Repulsive Parameters
    Ka Hung Lee
    Quan Van Vuong
    Victor Fung
    De-en Jiang
    Stephan Irle
    MRS Advances, 2019, 4 : 1821 - 1832
  • [5] Development of Density Functional Tight-Binding Parameters Using Relative Energy Fitting and Particle Swarm Optimization
    Aguirre, Nestor F.
    Morgenstern, Amanda
    Cawkwell, M. J.
    Batista, Enrique R.
    Yang, Ping
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (03) : 1469 - 1481
  • [6] Learning to Use the Force: Fitting Repulsive Potentials in Density-Functional Tight-Binding with Gaussian Process Regression
    Panosetti, Chiara
    Engelmann, Artur
    Nemec, Lydia
    Reuter, Karsten
    Margraf, Johannes T.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (04) : 2181 - 2191
  • [7] Density-functional tight-binding for beginners
    Koskinen, Pekka
    Makinen, Ville
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 47 (01) : 237 - 253
  • [8] Partition Analysis for Density-Functional Tight-Binding
    Fedorov, Dmitri G.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (49): : 10346 - 10358
  • [9] TIGHT-BINDING MODELS AND DENSITY-FUNCTIONAL THEORY
    MATTHEW, W
    FOULKES, C
    HAYDOCK, R
    PHYSICAL REVIEW B, 1989, 39 (17) : 12520 - 12536
  • [10] Development of Density-Functional Tight-Binding Parameters for the Molecular Dynamics Simulation of Zirconia, Yttria, and Yttria-Stabilized Zirconia
    Hutama, Aulia Sukma
    Marlina, Lala Adetia
    Chou, Chien-Pin
    Irle, Stephan
    Hofer, Thomas S.
    ACS OMEGA, 2021, 6 (31): : 20530 - 20548