Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm

被引:0
|
作者
Rosalia Maglietta
Nicola Amoroso
Marina Boccardi
Stefania Bruno
Andrea Chincarini
Giovanni B. Frisoni
Paolo Inglese
Alberto Redolfi
Sabina Tangaro
Andrea Tateo
Roberto Bellotti
机构
[1] Consiglio Nazionale delle Ricerche,Istituto di Studi sui Sistemi Intelligenti per l’Automazione
[2] Universita’ degli Studi di Bari,Dipartimento Interateneo di Fisica M.Merlin
[3] Sezione di Bari,Istituto Nazionale di Fisica Nucleare
[4] IRCCS S.Giovanni di Dio,LENITEM Laboratory of Epidemiology, Neuroimaging and Telemedicine
[5] FBF,Istituto Nazionale di Fisica Nucleare
[6] Overdale Hospital,Psychogeriatric Ward
[7] Sezione di Genova,undefined
[8] AFaR Associazione FateBeneFratelli per la Ricerca,undefined
[9] IRCCS S.Giovanni di Dio,undefined
[10] FBF,undefined
来源
关键词
Supervised learning; Classification; Segmentation ; MRI;
D O I
暂无
中图分类号
学科分类号
摘要
The automated identification of brain structure in Magnetic Resonance Imaging is very important both in neuroscience research and as a possible clinical diagnostic tool. In this study, a novel strategy for fully automated hippocampal segmentation in MRI is presented. It is based on a supervised algorithm, called RUSBoost, which combines data random undersampling with a boosting algorithm. RUSBoost is an algorithm specifically designed for imbalanced classification, suitable for large data sets because it uses random undersampling of the majority class. The RUSBoost performances were compared with those of ADABoost, Random Forest and the publicly available brain segmentation package, FreeSurfer. This study was conducted on a data set of 50 T1-weighted structural brain images. The RUSBoost-based segmentation tool achieved the best results with a Dice’s index of 0.88±0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.88 \pm 0.01$$\end{document} (0.87±0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.87 \pm 0.01$$\end{document}) for the left (right) brain hemisphere. An independent data set of 50 T1-weighted structural brain scans was used for an independent validation of the fully trained strategies. Again the RUSBoost segmentations compared favorably with manual segmentations with the highest performances among the four tools. Moreover, the Pearson correlation coefficient between hippocampal volumes computed by manual and RUSBoost segmentations was 0.83 (0.82) for left (right) side, statistically significant, and higher than those computed by Adaboost, Random Forest and FreeSurfer. The proposed method may be suitable for accurate, robust and statistically significant segmentations of hippocampi.
引用
收藏
页码:579 / 591
页数:12
相关论文
共 50 条
  • [1] Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm
    Maglietta, Rosalia
    Amoroso, Nicola
    Boccardi, Marina
    Bruno, Stefania
    Chincarini, Andrea
    Frisoni, Giovanni B.
    Inglese, Paolo
    Redolfi, Alberto
    Tangaro, Sabina
    Tateo, Andrea
    Bellotti, Roberto
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (02) : 579 - 591
  • [2] Automated 3D MRI pancreas segmentation
    Sheng, K.
    Gou, S.
    Hu, P.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S892 - S893
  • [3] Random forest classification for hippocampal segmentation in 3D MR images
    Maglietta, Rosalia
    Amoroso, Nicola
    Bruno, Stefania
    Chincarini, Andrea
    Frisoni, Giovanni
    Inglese, Paolo
    Tangaro, Sabina
    Tateo, Andrea
    Bellotti, Roberto
    [J]. 2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 1, 2013, : 264 - 267
  • [4] Performance of an automated segmentation algorithm for 3D MR renography
    Rusinek, Henrv
    Boykov, Yuri
    Kaur, Manmeen
    Wong, Samson
    Bokacheva, Louisa
    Sajous, Jan B.
    Huang, Ambrose J.
    Heller, Samantha
    Lee, Vivian S.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (06) : 1159 - 1167
  • [5] Automated Segmentation of Colorectal Tumor in 3D MRI Using 3D Multiscale Densely Connected Convolutional Neural Network
    Soomro, Mumtaz Hussain
    Coppotelli, Matteo
    Conforto, Silvia
    Schmid, Maurizio
    Giunta, Gaetano
    Del Secco, Lorenzo
    Neri, Emanuele
    Caruso, Damiano
    Rengo, Marco
    Laghi, Andrea
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019
  • [6] AUTOMATED 3D MUSCLE SEGMENTATION FROM MRI DATA USING CONVOLUTIONAL NEURAL NETWORK
    Ghosh, Shrimanti
    Boulanger, Pierre
    Acton, Scott T.
    Blemeker, Silvia S.
    Ray, Nilanjan
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4437 - 4441
  • [7] Fully Automated 3D Cardiac MRI Localisation and Segmentation Using Deep Neural Networks
    Vesal, Sulaiman
    Maier, Andreas
    Ravikumar, Nishant
    [J]. JOURNAL OF IMAGING, 2020, 6 (07)
  • [8] MRI image segmentation using multiscale autoregressive model and 3D Markov random fields
    Tardif, PM
    Zaccarin, A
    [J]. IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 1035 - 1046
  • [9] Automated Torso Organ Segmentation from 3D CT Images using Conditional Random Field
    Nimura, Yukitaka
    Hayashi, Yuichiro
    Kitasaka, Takayuki
    Misawa, Kazunari
    Mori, Kensaku
    [J]. MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [10] Fully automated pelvic bone segmentation in multiparameteric MRI using a 3D convolutional neural network
    Liu, Xiang
    Han, Chao
    Wang, He
    Wu, Jingyun
    Cui, Yingpu
    Zhang, Xiaodong
    Wang, Xiaoying
    [J]. INSIGHTS INTO IMAGING, 2021, 12 (01)