Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm

被引:0
|
作者
Rosalia Maglietta
Nicola Amoroso
Marina Boccardi
Stefania Bruno
Andrea Chincarini
Giovanni B. Frisoni
Paolo Inglese
Alberto Redolfi
Sabina Tangaro
Andrea Tateo
Roberto Bellotti
机构
[1] Consiglio Nazionale delle Ricerche,Istituto di Studi sui Sistemi Intelligenti per l’Automazione
[2] Universita’ degli Studi di Bari,Dipartimento Interateneo di Fisica M.Merlin
[3] Sezione di Bari,Istituto Nazionale di Fisica Nucleare
[4] IRCCS S.Giovanni di Dio,LENITEM Laboratory of Epidemiology, Neuroimaging and Telemedicine
[5] FBF,Istituto Nazionale di Fisica Nucleare
[6] Overdale Hospital,Psychogeriatric Ward
[7] Sezione di Genova,undefined
[8] AFaR Associazione FateBeneFratelli per la Ricerca,undefined
[9] IRCCS S.Giovanni di Dio,undefined
[10] FBF,undefined
来源
关键词
Supervised learning; Classification; Segmentation ; MRI;
D O I
暂无
中图分类号
学科分类号
摘要
The automated identification of brain structure in Magnetic Resonance Imaging is very important both in neuroscience research and as a possible clinical diagnostic tool. In this study, a novel strategy for fully automated hippocampal segmentation in MRI is presented. It is based on a supervised algorithm, called RUSBoost, which combines data random undersampling with a boosting algorithm. RUSBoost is an algorithm specifically designed for imbalanced classification, suitable for large data sets because it uses random undersampling of the majority class. The RUSBoost performances were compared with those of ADABoost, Random Forest and the publicly available brain segmentation package, FreeSurfer. This study was conducted on a data set of 50 T1-weighted structural brain images. The RUSBoost-based segmentation tool achieved the best results with a Dice’s index of 0.88±0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.88 \pm 0.01$$\end{document} (0.87±0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.87 \pm 0.01$$\end{document}) for the left (right) brain hemisphere. An independent data set of 50 T1-weighted structural brain scans was used for an independent validation of the fully trained strategies. Again the RUSBoost segmentations compared favorably with manual segmentations with the highest performances among the four tools. Moreover, the Pearson correlation coefficient between hippocampal volumes computed by manual and RUSBoost segmentations was 0.83 (0.82) for left (right) side, statistically significant, and higher than those computed by Adaboost, Random Forest and FreeSurfer. The proposed method may be suitable for accurate, robust and statistically significant segmentations of hippocampi.
引用
收藏
页码:579 / 591
页数:12
相关论文
共 50 条
  • [31] Fast plaque burden assessment of the femoral artery using 3D black-blood MRI and automated segmentation
    Chiu, Bernard
    Sun, Jie
    Zhao, Xihai
    Wang, Jinnan
    Balu, Niranjan
    Chi, Jiachang
    Xu, Jianrong
    Yuan, Chun
    Kerwin, William S.
    [J]. MEDICAL PHYSICS, 2011, 38 (10) : 5370 - 5384
  • [32] A fuzzy Kohonen's competitive learning algorithm for 3D MRI image segmentation
    Kong, Jun
    Wang, Jianzhong
    Lu, Yinghua
    Zhang, Jingdan
    Zhang, Jingbo
    [J]. INTELLIGENT COMPUTING IN SIGNAL PROCESSING AND PATTERN RECOGNITION, 2006, 345 : 19 - 29
  • [33] Automatic cerebral and cerebellar hemisphere segmentation in 3D MRI: Adaptive disconnection algorithm
    Zhao, Lu
    Ruotsalainen, Ulla
    Hirvonen, Jussi
    Hietala, Jarmo
    Tohka, Jussi
    [J]. MEDICAL IMAGE ANALYSIS, 2010, 14 (03) : 360 - 372
  • [34] Automated 3D liver segmentation from hepatobiliary phase MRI for enhanced preoperative planning
    Namkee Oh
    Jae-Hun Kim
    Jinsoo Rhu
    Woo Kyoung Jeong
    Gyu-seong Choi
    Jong Man Kim
    Jae-Won Joh
    [J]. Scientific Reports, 13
  • [35] Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN
    Li, Yuan-Zhe
    Wang, Yi
    Fang, Kai-Bin
    Zheng, Hui-Zhong
    Lai, Qing-Quan
    Xia, Yong-Fa
    Chen, Jia-Yang
    Dai, Zhang-sheng
    [J]. EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2022, 27 (01)
  • [36] Automated MRI Lung Segmentation and 3D Morphologic Features for Quantification of Neonatal Lung Disease
    Mairhoermann, Benedikt
    Castelblanco, Alejandra
    Haefner, Friederike
    Koliogiannis, Vanessa
    Haist, Lena
    Winter, Dominik
    Flemmer, Andreas
    Ehrhardt, Harald
    Stoecklein, Sophia
    Dietrich, Olaf
    Foerster, Kai
    Hilgendorff, Anne
    Schubert, Benjamin
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2023, 5 (06)
  • [37] Automated 3D liver segmentation from hepatobiliary phase MRI for enhanced preoperative planning
    Oh, Namkee
    Kim, Jae-Hun
    Rhu, Jinsoo
    Jeong, Woo Kyoung
    Choi, Gyu-seong
    Kim, Jong Man
    Joh, Jae-Won
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [38] Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN
    Yuan-Zhe Li
    Yi Wang
    Kai-Bin Fang
    Hui-Zhong Zheng
    Qing-Quan Lai
    Yong-Fa Xia
    Jia-Yang Chen
    Zhang-sheng Dai
    [J]. European Journal of Medical Research, 27
  • [39] Multiscale 3D shape representation and segmentation with applications to hippocampal/caudate extraction from brain MRI
    Gao, Yi
    Corn, Benjamin
    Schifter, Dan
    Tannenbaum, Allen
    [J]. MEDICAL IMAGE ANALYSIS, 2012, 16 (02) : 374 - 385
  • [40] Enhanced Crack Segmentation Algorithm Using 3D Pavement Data
    Jiang, Chenglong
    Tsai, Yichang James
    [J]. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2016, 30 (03)