Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm

被引:0
|
作者
Rosalia Maglietta
Nicola Amoroso
Marina Boccardi
Stefania Bruno
Andrea Chincarini
Giovanni B. Frisoni
Paolo Inglese
Alberto Redolfi
Sabina Tangaro
Andrea Tateo
Roberto Bellotti
机构
[1] Consiglio Nazionale delle Ricerche,Istituto di Studi sui Sistemi Intelligenti per l’Automazione
[2] Universita’ degli Studi di Bari,Dipartimento Interateneo di Fisica M.Merlin
[3] Sezione di Bari,Istituto Nazionale di Fisica Nucleare
[4] IRCCS S.Giovanni di Dio,LENITEM Laboratory of Epidemiology, Neuroimaging and Telemedicine
[5] FBF,Istituto Nazionale di Fisica Nucleare
[6] Overdale Hospital,Psychogeriatric Ward
[7] Sezione di Genova,undefined
[8] AFaR Associazione FateBeneFratelli per la Ricerca,undefined
[9] IRCCS S.Giovanni di Dio,undefined
[10] FBF,undefined
来源
关键词
Supervised learning; Classification; Segmentation ; MRI;
D O I
暂无
中图分类号
学科分类号
摘要
The automated identification of brain structure in Magnetic Resonance Imaging is very important both in neuroscience research and as a possible clinical diagnostic tool. In this study, a novel strategy for fully automated hippocampal segmentation in MRI is presented. It is based on a supervised algorithm, called RUSBoost, which combines data random undersampling with a boosting algorithm. RUSBoost is an algorithm specifically designed for imbalanced classification, suitable for large data sets because it uses random undersampling of the majority class. The RUSBoost performances were compared with those of ADABoost, Random Forest and the publicly available brain segmentation package, FreeSurfer. This study was conducted on a data set of 50 T1-weighted structural brain images. The RUSBoost-based segmentation tool achieved the best results with a Dice’s index of 0.88±0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.88 \pm 0.01$$\end{document} (0.87±0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.87 \pm 0.01$$\end{document}) for the left (right) brain hemisphere. An independent data set of 50 T1-weighted structural brain scans was used for an independent validation of the fully trained strategies. Again the RUSBoost segmentations compared favorably with manual segmentations with the highest performances among the four tools. Moreover, the Pearson correlation coefficient between hippocampal volumes computed by manual and RUSBoost segmentations was 0.83 (0.82) for left (right) side, statistically significant, and higher than those computed by Adaboost, Random Forest and FreeSurfer. The proposed method may be suitable for accurate, robust and statistically significant segmentations of hippocampi.
引用
收藏
页码:579 / 591
页数:12
相关论文
共 50 条
  • [21] Automated 3D segmentation of brain tumor using visual saliency
    Banerjee, Subhashis
    Mitra, Sushmita
    Shankar, B. Uma
    [J]. INFORMATION SCIENCES, 2018, 424 : 337 - 353
  • [22] Automated 3D segmentation using deformable models and fuzzy affinity
    Jones, TN
    Metaxas, DN
    [J]. INFORMATION PROCESSING IN MEDICAL IMAGING, 1997, 1230 : 113 - 126
  • [23] Automated 3D Choroidal Segmentation Using Multimodal Complementary Information
    Hu, Zhihong
    Wang, Ziyuan Chris
    Sadda, Srinivas R.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [24] Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning
    Berhane, Haben
    Scott, Michael
    Elbaz, Mohammed
    Jarvis, Kelly
    McCarthy, Patrick
    Carr, James
    Malaisrie, Chris
    Avery, Ryan
    Barker, Alex J.
    Robinson, Joshua D.
    Rigsby, Cynthia K.
    Markl, Michael
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (04) : 2204 - 2218
  • [25] Rapid and effective segmentation of 3D models using random walks
    Lai, Yu-Kun
    Hu, Shi-Min
    Martin, Ralph R.
    Rosin, Paul L.
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (06) : 665 - 679
  • [26] 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization
    Myronenko, Andriy
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 311 - 320
  • [27] 3D MRI segmentation of brain structures
    Verard, L
    Fadili, J
    Ruan, S
    Bloyet, D
    [J]. PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5, 1997, 18 : 1081 - 1082
  • [28] A Unique Method for 3D MRI Segmentation
    Bodkhe, Sonali T.
    Raut, Sheetal A.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, 2008, : 118 - 122
  • [29] Automatic segmentation of 3D-MRI data using a genetic algorithm
    Möller, R
    Zeipelt, R
    [J]. INTERNATIONAL WORKSHOP ON MEDICAL IMAGING AND AUGMENTED REALITY, PROCEEDINGS, 2001, : 278 - 281
  • [30] Automated Segmentation Method for Low Field 3D Stomach MRI Using Transferred Learning Image Enhancement Network
    Huang, Luguang
    Li, Mengbin
    Gou, Shuiping
    Zhang, Xiaopeng
    Jiang, Kun
    [J]. BIOMED RESEARCH INTERNATIONAL, 2021, 2021