Performance of an automated segmentation algorithm for 3D MR renography

被引:60
|
作者
Rusinek, Henrv
Boykov, Yuri
Kaur, Manmeen
Wong, Samson
Bokacheva, Louisa
Sajous, Jan B.
Huang, Ambrose J.
Heller, Samantha
Lee, Vivian S.
机构
[1] NYU, Sch Med, Dept Radiol, New York, NY 10016 USA
[2] Univ Western Ontario, Dept Comp Sci, London, ON N6A 3K7, Canada
[3] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO 63130 USA
关键词
image analysis; MR renography; magnetic resonance imaging; renal function; error analysis;
D O I
10.1002/mrm.21240
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The accuracy and precision of an automated graph-cuts (GC) segmentation technique for dynamic contrast-enhanced (DCE) 3D MR renography (MRR) was analyzed using 18 simulated and 22 clinical datasets. For clinical data, the error was 7.2 +/- 6.1 cm(3) for the cortex and 6.5 +/- 4.6 cm(3) for the medulla. The precision of segmentation was 7.1 +/- 4.2 cm(3) for the cortex and 7.2 +/- 2.4 cm(3) for the medulla. Compartmental modeling of kidney function in 22 kidneys yielded a renal plasma flow (RPF) error of 7.5% +/- 4.5% and single-kidney GFR error of 13.5% +/- 8.8%. The precision was 9.7% +/- 6.4% for RPF and 14.8% +/- 11.9% for GFR. It took 21 min to segment one kidney using GC, compared to 2.5 hr for manual segmentation. The accuracy and precision in RPF and GFR appear acceptable for clinical use. With expedited image processing, DCE 3D MRR has the potential to expand our knowledge of renal function in individual kidneys and to help diagnose renal insufficiency in a safe and noninvasive manner.
引用
收藏
页码:1159 / 1167
页数:9
相关论文
共 50 条
  • [1] Automated segmentation of necrotic femoral head from 3D MR data
    Zoroofi, RA
    Sato, Y
    Nishii, T
    Sugano, N
    Yoshikawa, H
    Tamura, S
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2004, 28 (05) : 267 - 278
  • [2] An Automated Lung Parenchyma Segmentation Method for 3D Thoracic MR Images
    Li, Yan-Feng
    Chen, Hou-Jin
    Wei, Xue-Ye
    [J]. 2015 International Conference on Software Engineering and Information System (SEIS 2015), 2015, : 330 - 336
  • [3] Automated brain segmentation algorithm for 3D magnetic resonance brain images
    Park, Jong Geun
    Jeong, Taeuk
    Lee, Chulhee
    [J]. SOFA 2007: 2ND IEEE INTERNATIONAL WORKSHOP ON SOFT COMPUTING APPLICATIONS, PROCEEDINGS, 2007, : 57 - +
  • [4] 3D MR coronary artery segmentation
    Cline, HE
    Thedens, DR
    Irarrazaval, P
    Meyer, CH
    Hu, BS
    Nishimura, DG
    Ludke, S
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1998, 40 (05) : 697 - 702
  • [5] Segmentation of 3D MR image sequences
    Haris, K
    Strintzis, MG
    [J]. COMPUTERS IN CARDIOLOGY 1996, 1996, : 425 - 428
  • [6] An algorithm for 3D image segmentation
    Zhi, Ding
    Dong Yu-ning
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS, 2007, : 383 - +
  • [7] Automated 3D MRI pancreas segmentation
    Sheng, K.
    Gou, S.
    Hu, P.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S892 - S893
  • [8] Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm
    Rosalia Maglietta
    Nicola Amoroso
    Marina Boccardi
    Stefania Bruno
    Andrea Chincarini
    Giovanni B. Frisoni
    Paolo Inglese
    Alberto Redolfi
    Sabina Tangaro
    Andrea Tateo
    Roberto Bellotti
    [J]. Pattern Analysis and Applications, 2016, 19 : 579 - 591
  • [9] Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm
    Maglietta, Rosalia
    Amoroso, Nicola
    Boccardi, Marina
    Bruno, Stefania
    Chincarini, Andrea
    Frisoni, Giovanni B.
    Inglese, Paolo
    Redolfi, Alberto
    Tangaro, Sabina
    Tateo, Andrea
    Bellotti, Roberto
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (02) : 579 - 591
  • [10] 3D VIDEO PERFORMANCE SEGMENTATION
    Tung, Tony
    Matsuyama, Takashi
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 25 - 28