Rainbow 2-connectivity of edge-comb product of a cycle and a Hamiltonian graph

被引:0
|
作者
Martin Bača
A N M Salman
Rinovia Simanjuntak
Bety Hayat Susanti
机构
[1] Technical University,Department of Applied Mathematics
[2] Institut Teknologi Bandung,Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences
来源
关键词
Cycle; edge-comb product; Hamiltonian graph; rainbow 2-connectivity; rainbow path; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
An edge-colored graph G is rainbow k-connected, if for every two vertices of G, there are k internally disjoint rainbow paths, i.e., if no two edges of each path are colored the same. The minimum number of colors needed for which there exists a rainbow k-connected coloring of G, rck(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rc_k(G)$$\end{document}, is the rainbow k-connection number of G. Let G and H be two connected graphs, where O is an orientation of G. Let e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vec {e}}$$\end{document} be an oriented edge of H. The edge-comb product of G (under the orientation O) and H on e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {e}$$\end{document}, Go⊳e→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G{}^o\rhd _{\vec {e}}H$$\end{document}, is a graph obtained by taking one copy of G and |E(G)| copies of H and identifying the i-th copy of H at the edge e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vec {e}}$$\end{document} to the i-th edge of G, where the two edges have the same orientation. In this paper, we provide sharp lower and upper bounds for rainbow 2-connection numbers of edge-comb product of a cycle and a Hamiltonian graph. We also determine the rainbow 2-connection numbers of edge-comb product of a cycle with some graphs, i.e. complete graph, fan graph, cycle graph, and wheel graph.
引用
收藏
相关论文
共 44 条