Rainbow 2-connectivity of edge-comb product of a cycle and a Hamiltonian graph

被引:0
|
作者
Martin Bača
A N M Salman
Rinovia Simanjuntak
Bety Hayat Susanti
机构
[1] Technical University,Department of Applied Mathematics
[2] Institut Teknologi Bandung,Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences
来源
关键词
Cycle; edge-comb product; Hamiltonian graph; rainbow 2-connectivity; rainbow path; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
An edge-colored graph G is rainbow k-connected, if for every two vertices of G, there are k internally disjoint rainbow paths, i.e., if no two edges of each path are colored the same. The minimum number of colors needed for which there exists a rainbow k-connected coloring of G, rck(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rc_k(G)$$\end{document}, is the rainbow k-connection number of G. Let G and H be two connected graphs, where O is an orientation of G. Let e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vec {e}}$$\end{document} be an oriented edge of H. The edge-comb product of G (under the orientation O) and H on e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {e}$$\end{document}, Go⊳e→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G{}^o\rhd _{\vec {e}}H$$\end{document}, is a graph obtained by taking one copy of G and |E(G)| copies of H and identifying the i-th copy of H at the edge e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vec {e}}$$\end{document} to the i-th edge of G, where the two edges have the same orientation. In this paper, we provide sharp lower and upper bounds for rainbow 2-connection numbers of edge-comb product of a cycle and a Hamiltonian graph. We also determine the rainbow 2-connection numbers of edge-comb product of a cycle with some graphs, i.e. complete graph, fan graph, cycle graph, and wheel graph.
引用
收藏
相关论文
共 44 条
  • [31] A 1.8 Approximation Algorithm for Augmenting Edge-Connectivity of a Graph from 1 to 2
    Even, Guy
    Feldman, Jon
    Kortsarz, Guy
    Nutov, Zeev
    ACM TRANSACTIONS ON ALGORITHMS, 2009, 5 (02)
  • [32] The number of 2-edge-colored complete graphs with unique hamiltonian alternating cycle
    Benkouar, A
    Manoussakis, Y
    Saad, R
    DISCRETE MATHEMATICS, 2003, 263 (1-3) : 1 - 10
  • [33] L(3,2,1)-LABELING FOR THE PRODUCT OF A COMPLETE GRAPH AND A CYCLE
    Kim, Byeong Moon
    Hwang, Woonjae
    Song, Byung Chul
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (03): : 849 - 859
  • [34] A 1.5-approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2
    Even, Guy
    Kortsarz, Guy
    Nutov, Zeev
    INFORMATION PROCESSING LETTERS, 2011, 111 (06) : 296 - 300
  • [35] A Simplified 1.5-Approximation Algorithm for Augmenting Edge-Connectivity of a Graph from 1 to 2
    Kortsarz, Guy
    Nutov, Zeev
    ACM TRANSACTIONS ON ALGORITHMS, 2016, 12 (02)
  • [36] The L(3,2,1)-labeling number of the Cartesian product of a complete graph and a cycle
    Ma, Dengju
    Yao, Shunyu
    Dong, Xiaoyuan
    ARS COMBINATORIA, 2021, 154 : 87 - 100
  • [37] A 3/2-approximation algorithm for augmenting the edge-connectivity of a graph from 1 to 2 using a subset of a given edge set - (Extended abstract)
    Even, G
    Feldman, J
    Kortsarz, G
    Nutov, Z
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2001, 2129 : 90 - 101
  • [38] Reliability measure of the n-th cartesian product of complete graph K4 on h-extra edge-connectivity
    Tian, Zhaoxia
    Zhang, Mingzu
    Feng, Xing
    THEORETICAL COMPUTER SCIENCE, 2022, 922 : 46 - 60
  • [39] A cycle cover of a 2-edge-connected graph embedded with large face-width on an orientable surface
    Dengju Ma
    Han Ren
    Israel Journal of Mathematics, 2016, 212 : 219 - 235
  • [40] A CYCLE COVER OF A 2-EDGE-CONNECTED GRAPH EMBEDDED WITH LARGE FACE-WIDTH ON AN ORIENTABLE SURFACE
    Ma, Dengju
    Ren, Han
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 212 (01) : 219 - 235