Rainbow 2-connectivity of edge-comb product of a cycle and a Hamiltonian graph

被引:0
|
作者
Martin Bača
A N M Salman
Rinovia Simanjuntak
Bety Hayat Susanti
机构
[1] Technical University,Department of Applied Mathematics
[2] Institut Teknologi Bandung,Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences
来源
关键词
Cycle; edge-comb product; Hamiltonian graph; rainbow 2-connectivity; rainbow path; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
An edge-colored graph G is rainbow k-connected, if for every two vertices of G, there are k internally disjoint rainbow paths, i.e., if no two edges of each path are colored the same. The minimum number of colors needed for which there exists a rainbow k-connected coloring of G, rck(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rc_k(G)$$\end{document}, is the rainbow k-connection number of G. Let G and H be two connected graphs, where O is an orientation of G. Let e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vec {e}}$$\end{document} be an oriented edge of H. The edge-comb product of G (under the orientation O) and H on e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {e}$$\end{document}, Go⊳e→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G{}^o\rhd _{\vec {e}}H$$\end{document}, is a graph obtained by taking one copy of G and |E(G)| copies of H and identifying the i-th copy of H at the edge e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vec {e}}$$\end{document} to the i-th edge of G, where the two edges have the same orientation. In this paper, we provide sharp lower and upper bounds for rainbow 2-connection numbers of edge-comb product of a cycle and a Hamiltonian graph. We also determine the rainbow 2-connection numbers of edge-comb product of a cycle with some graphs, i.e. complete graph, fan graph, cycle graph, and wheel graph.
引用
收藏
相关论文
共 44 条
  • [21] HAMILTONIAN PROPERTIES OF THE CUBE OF A 2-EDGE CONNECTED GRAPH
    PAOLI, M
    JOURNAL OF GRAPH THEORY, 1988, 12 (01) : 85 - 94
  • [22] 2 EDGE-DISJOINT HAMILTONIAN CYCLES IN THE BUTTERFLY GRAPH
    BARTH, D
    RASPAUD, A
    INFORMATION PROCESSING LETTERS, 1994, 51 (04) : 175 - 179
  • [23] On P2 ◊ Pn-supermagic labeling of edge corona product of cycle and path graph
    Yulianto, R.
    Martini, Titin S.
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008
  • [24] Connectivity of the product replacement algorithm graph of PSL(2,q)
    Garion, Shelly
    JOURNAL OF GROUP THEORY, 2008, 11 (06) : 765 - 777
  • [25] A Hamiltonian Cycle in the Square of a 2-connected Graph in Linear Time
    Alstrup, Stephen
    Georgakopoulos, Agelos
    Rotenberg, Eva
    Thomassen, Carsten
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1645 - 1649
  • [26] 2 EDGE-DISJOINT HAMILTONIAN CYCLES IN AN ORE-TYPE-(2) GRAPH
    WU, ZS
    KEXUE TONGBAO, 1986, 31 (19): : 1363 - 1364
  • [27] Global Vertex-Edge Domination Sets in Total Graph and Product Graph of Path Pn Cycle Cn
    Chitra, S.
    Sattanathan, R.
    MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTATION, 2012, 283 : 68 - 77
  • [28] Hamiltonian paths in the complete graph with edge-lengths 1, 2, 3
    Capparelli, Stefano
    Del Fra, Alberto
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [29] TWO EDGE-DISJOINT HAMILTONIAN CYCLES IN AN ORE-TYPE-(2), GRAPH
    吴正声
    Science Bulletin, 1986, (19) : 1363 - 1364
  • [30] Cyclic Near-Hamiltonian Cycle Decomposition of 2-Fold Complete Graph
    Aldiabat, Raja'i
    Ibrahim, Haslinda
    Karim, Sharmila
    4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019), 2019, 2138