Rainbow 2-connectivity of edge-comb product of a cycle and a Hamiltonian graph

被引:0
|
作者
Martin Bača
A N M Salman
Rinovia Simanjuntak
Bety Hayat Susanti
机构
[1] Technical University,Department of Applied Mathematics
[2] Institut Teknologi Bandung,Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences
来源
关键词
Cycle; edge-comb product; Hamiltonian graph; rainbow 2-connectivity; rainbow path; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
An edge-colored graph G is rainbow k-connected, if for every two vertices of G, there are k internally disjoint rainbow paths, i.e., if no two edges of each path are colored the same. The minimum number of colors needed for which there exists a rainbow k-connected coloring of G, rck(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rc_k(G)$$\end{document}, is the rainbow k-connection number of G. Let G and H be two connected graphs, where O is an orientation of G. Let e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vec {e}}$$\end{document} be an oriented edge of H. The edge-comb product of G (under the orientation O) and H on e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {e}$$\end{document}, Go⊳e→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G{}^o\rhd _{\vec {e}}H$$\end{document}, is a graph obtained by taking one copy of G and |E(G)| copies of H and identifying the i-th copy of H at the edge e→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vec {e}}$$\end{document} to the i-th edge of G, where the two edges have the same orientation. In this paper, we provide sharp lower and upper bounds for rainbow 2-connection numbers of edge-comb product of a cycle and a Hamiltonian graph. We also determine the rainbow 2-connection numbers of edge-comb product of a cycle with some graphs, i.e. complete graph, fan graph, cycle graph, and wheel graph.
引用
收藏
相关论文
共 44 条
  • [1] Rainbow 2-connectivity of edge-comb product of a cycle and a Hamiltonian graph
    Baca, Martin
    Salman, A. N. M.
    Simanjuntak, Rinovia
    Susanti, Bety Hayat
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [2] The strong 3-rainbow index of edge-comb product of a path and a connected graph
    Awanis, Zata Yumni
    Salman, A. N. M.
    Saputro, Suhadi Wido
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 33 - 50
  • [3] Upper Bounds for Rainbow 2-Connectivity of the Cartesian Product of a Path and a Cycle
    Susanti, Bety Hayat
    Salman, A. N. M.
    Simanjuntak, Rinovia
    2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 151 - 154
  • [4] NOTE ON THE VERTEX 2-CONNECTIVITY OF A GRAPH
    MARCU, D
    MATHEMATIKA, 1988, 35 (69) : 69 - 71
  • [5] The super edge-connectivity of direct product of a graph and a cycle
    Guo, Sijia
    Hu, Xiaomin
    Yang, Weihua
    Zhao, Shuang
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16): : 23367 - 23383
  • [6] Connectivity of the tensor product of a graph and a cycle
    Sonawane, A. V.
    Borse, Y. M.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2021, 36 (04) : 325 - 330
  • [7] The rainbow 2-connectivity of Cartesian products of 2-connected graphs and paths
    Susanti, Bety Hayat
    Salman, A. N. M.
    Simanjuntak, Rinovia
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2020, 8 (01) : 145 - 156
  • [8] Bound of Distance Domination Number of Graph and Edge Comb Product Graph
    Gembong, A. W.
    Slamin
    Dafik
    Agustin, Ika Hesti
    INTERNATIONAL CONFERENCE ON MATHEMATICS: EDUCATION, THEORY AND APPLICATION, 2017, 855
  • [9] The total rainbow connection on comb product of cycle and path graphs
    Hastuti, Y.
    Dafik
    Agustin, I. H.
    Prihandini, R. M.
    Alfarisi, R.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [10] Flexible Graph Connectivity Approximating network design problems between 1-and 2-connectivity
    Adjiashvili, David
    Hommelsheim, Felix
    Muhlenthaler, Moritz
    MATHEMATICAL PROGRAMMING, 2022, 192 (1-2) : 409 - 441