The three primes theorem with primes in the intersection of two Piatetski--Shapiro sets

被引:0
|
作者
X. Li
W. Zhai
机构
[1] China University of Mining and Technology,Department of Mathematics
来源
Acta Mathematica Hungarica | 2022年 / 168卷
关键词
Piatetski–Shapiro prime set; exponential sum; asymptotic formula; primary 11N05; secondary 11L07;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known three primes theorem says that, for every sufficiently large odd integer N, the equation N=p1+p2+p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=p_1+p_2+p_3$$\end{document} is solvable for prime variables p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1, p_2, p_3$$\end{document}. In this paper we shall prove that the three primes theorem still holds if each of the three primes is in the intersection of two Piatetski--Shapiro sets.
引用
收藏
页码:228 / 245
页数:17
相关论文
共 50 条