The three primes theorem with primes in the intersection of two Piatetski--Shapiro sets

被引:0
|
作者
X. Li
W. Zhai
机构
[1] China University of Mining and Technology,Department of Mathematics
来源
Acta Mathematica Hungarica | 2022年 / 168卷
关键词
Piatetski–Shapiro prime set; exponential sum; asymptotic formula; primary 11N05; secondary 11L07;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known three primes theorem says that, for every sufficiently large odd integer N, the equation N=p1+p2+p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=p_1+p_2+p_3$$\end{document} is solvable for prime variables p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1, p_2, p_3$$\end{document}. In this paper we shall prove that the three primes theorem still holds if each of the three primes is in the intersection of two Piatetski--Shapiro sets.
引用
收藏
页码:228 / 245
页数:17
相关论文
共 50 条
  • [21] An additive problem over Piatetski-Shapiro primes and almost-primes
    Li, Jinjiang
    Zhang, Min
    Xue, Fei
    RAMANUJAN JOURNAL, 2022, 57 (04): : 1307 - 1333
  • [22] On Hecke eigenvalues at Piatetski-Shapiro primes
    Baier, Stephan
    Zhao, Liangyi
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 : 175 - 201
  • [23] Piatetski-Shapiro primes in a Beatty sequence
    Guo, Victor Z.
    JOURNAL OF NUMBER THEORY, 2015, 156 : 317 - 330
  • [24] Diophantine approximation by Piatetski-Shapiro primes
    S. I. Dimitrov
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 875 - 883
  • [25] Piatetski-Shapiro primes in arithmetic progressions
    Guo, Victor Zhenyu
    Li, Jinjiang
    Zhang, Min
    RAMANUJAN JOURNAL, 2023, 60 (03): : 677 - 692
  • [26] Diophantine approximation by Piatetski-Shapiro primes
    Dimitrov, S. I.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04): : 875 - 883
  • [27] Hua's theorem with the primes in Shapiro prime sets
    Cui Zhen
    Acta Mathematica Hungarica, 2004, 104 : 323 - 329
  • [28] Hua's theorem with the primes in Shapiro prime sets
    Zhen, C
    ACTA MATHEMATICA HUNGARICA, 2004, 104 (04) : 323 - 329
  • [29] Roth-type theorem for nonlinear equations in Piatetski-Shapiro primes
    Ren, Xiumin
    Sun, Yu-Chen
    Zhang, Qingqing
    Zhang, Rui
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (04) : 887 - 902
  • [30] Diophantine inequalities over Piatetski-Shapiro primes
    Jing Huang
    Wenguang Zhai
    Deyu Zhang
    Frontiers of Mathematics in China, 2021, 16 : 749 - 770