The three primes theorem with primes in the intersection of two Piatetski--Shapiro sets

被引:0
|
作者
X. Li
W. Zhai
机构
[1] China University of Mining and Technology,Department of Mathematics
来源
Acta Mathematica Hungarica | 2022年 / 168卷
关键词
Piatetski–Shapiro prime set; exponential sum; asymptotic formula; primary 11N05; secondary 11L07;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known three primes theorem says that, for every sufficiently large odd integer N, the equation N=p1+p2+p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=p_1+p_2+p_3$$\end{document} is solvable for prime variables p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1, p_2, p_3$$\end{document}. In this paper we shall prove that the three primes theorem still holds if each of the three primes is in the intersection of two Piatetski--Shapiro sets.
引用
收藏
页码:228 / 245
页数:17
相关论文
共 50 条
  • [31] Diophantine approximation over Piatetski-Shapiro primes
    Li, Taiyu
    Liu, Huafeng
    JOURNAL OF NUMBER THEORY, 2020, 211 : 184 - 198
  • [32] Almost primes in generalized Piatetski-Shapiro sequences
    Qi, Jinyun
    Xu, Zhefeng
    AIMS MATHEMATICS, 2022, 7 (08): : 14154 - 14162
  • [33] AN ADDITIVE PROBLEM INVOLVING PIATETSKI-SHAPIRO PRIMES
    Wang, Xinna
    Cai, Yingchun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (05) : 1359 - 1378
  • [34] SMALL GAPS BETWEEN THE PIATETSKI-SHAPIRO PRIMES
    Li, Hongze
    Pan, Hao
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (12) : 8463 - 8484
  • [35] Diophantine inequalities over Piatetski-Shapiro primes
    Huang, Jing
    Zhai, Wenguang
    Zhang, Deyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (03) : 749 - 770
  • [36] Roth-type Theorem for High-power System in Piatetski-Shapiro primes
    Zhang, Qingqing
    Zhang, Rui
    FRONTIERS OF MATHEMATICS, 2025, 20 (01): : 67 - 86
  • [37] On Waring-Goldbach problem with Piatetski-Shapiro primes
    Akbal, Yildirim
    Guloglu, Ahmet M.
    JOURNAL OF NUMBER THEORY, 2018, 185 : 80 - 92
  • [38] Waring-Goldbach Problem with Piatetski-Shapiro Primes
    Akbal, Yildirim
    Guloglu, Ahmet M.
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (02): : 449 - 467
  • [39] The ternary Goldbach problem with two Piatetski-Shapiro primes and a prime with a missing digit
    Maier, Helmut
    Rassias, Michael Th
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (02)
  • [40] On the distribution of αp modulo one over Piatetski-Shapiro primes
    Dimitrov, Stoyan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 858 - 867