A Strongly Nonlinear Elliptic Problem with Generalized Growth in Musielak Spaces

被引:0
|
作者
Mohamed Bourahma
Abdelmoujib Benkirane
Jaouad Bennouna
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar el Mahraz
关键词
Elliptic problems; Musielak–Orlicz–Sobolev spaces; Renormalized solutions; Generalized growth; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we prove an existence theorem of renormalized solutions for nonlinear elliptic problem of the type -divA(x,u,∇u)-divΦ(x,u)+H(x,u,∇u)=finΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\mathop {\mathrm{div}}\>{\mathcal {A}}(x,u,\nabla u)-\mathop {\mathrm{div}}\varPhi (x,u)+{\mathcal {H}}(x,u,\nabla u)= f \quad \hbox {in }{\varOmega }, \end{aligned}$$\end{document}where the first lower-order term Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} satisfies only a generalized natural growth condition without any supplementary assumptions. The approach does not require any particular type of growth condition on Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}.
引用
收藏
页码:51 / 85
页数:34
相关论文
共 50 条
  • [21] An elliptic problem with strongly nonlinear interface condition
    Doerfler, Willy
    Maier, Markus
    APPLICABLE ANALYSIS, 2020, 99 (03) : 479 - 495
  • [22] Nonlinear elliptic equations by topological degree in Musielak-Orlicz-Sobolev spaces
    Hammou, Mustapha Ait
    Lahmi, Badr
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (04): : 859 - 872
  • [23] An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces
    Benkirane, A.
    El Vally, M. Sidi
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (01) : 57 - 75
  • [24] On some nonlinear degenerate elliptic equations having a lower term in Musielak spaces
    Aberqi, Ahmed
    Benkirane, Abdelmoujib
    Elmassoudi, Mhamed
    ADVANCES IN OPERATOR THEORY, 2022, 7 (01)
  • [25] NONLINEAR PARABOLIC-ELLIPTIC SYSTEM IN MUSIELAK-ORLICZ-SOBOLEV SPACES
    Ortegon Gallego, Francisco
    Rhoudaf, Mohamed
    Sabiki, Hajar
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [26] Entropy Solutions to a Strongly Nonlinear Unilateral Obstacle Elliptic Problem with Orlicz Growth
    Bourahma, Mohamed
    Benkirane, Abdelmoujib
    Bennouna, Jaouad
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (02) : 587 - 612
  • [27] Entropy Solutions to a Strongly Nonlinear Unilateral Obstacle Elliptic Problem with Orlicz Growth
    Mohamed Bourahma
    Abdelmoujib Benkirane
    Jaouad Bennouna
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 587 - 612
  • [28] Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces
    Kashnikova, A. P.
    Kozhevnikova, L. M.
    SBORNIK MATHEMATICS, 2022, 213 (04) : 476 - 511
  • [29] Variational nonlinear elliptic equations having large monotonocity in Musielak-Sobolev spaces
    El Amarty N.
    El Moumni M.
    Bouzyani R.
    SeMA Journal, 2025, 82 (1) : 109 - 122
  • [30] Holder continuity for nonlinear elliptic problem in Musielak-Orlicz-Sobolev space
    Wang, Beibei
    Liu, Duchao
    Zhao, Peihao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (08) : 4835 - 4863