A Strongly Nonlinear Elliptic Problem with Generalized Growth in Musielak Spaces

被引:0
|
作者
Mohamed Bourahma
Abdelmoujib Benkirane
Jaouad Bennouna
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar el Mahraz
关键词
Elliptic problems; Musielak–Orlicz–Sobolev spaces; Renormalized solutions; Generalized growth; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we prove an existence theorem of renormalized solutions for nonlinear elliptic problem of the type -divA(x,u,∇u)-divΦ(x,u)+H(x,u,∇u)=finΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\mathop {\mathrm{div}}\>{\mathcal {A}}(x,u,\nabla u)-\mathop {\mathrm{div}}\varPhi (x,u)+{\mathcal {H}}(x,u,\nabla u)= f \quad \hbox {in }{\varOmega }, \end{aligned}$$\end{document}where the first lower-order term Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} satisfies only a generalized natural growth condition without any supplementary assumptions. The approach does not require any particular type of growth condition on Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}.
引用
收藏
页码:51 / 85
页数:34
相关论文
共 50 条
  • [31] Fractional Musielak spaces: study of nonlocal elliptic problem with Choquard-logarithmic nonlinearity
    El-Houari, Hamza
    Moussa, Hicham
    Sabiki, Hajar
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [32] Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak-Orlicz spaces
    Li, Ying
    Yao, Fengping
    Zhou, Shulin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [33] On Some Nonlinear Elliptic Problems with Large Monotonocity in Musielak-Orlicz-Sobolev Spaces
    Azraibi, Ouidad
    El Haji, Badr
    Mekkour, Mounir
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (03) : 332 - 349
  • [34] STRONGLY NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEM
    HESS, P
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 43 (01) : 241 - 249
  • [36] Renormalized solutions to nonlinear parabolic problems in generalized Musielak-Orlicz spaces
    Gwiazda, P.
    Wittbold, P.
    Wroblewska-Kaminska, A.
    Zimmermann, A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 129 : 1 - 36
  • [37] Fractional Musielak spaces: a class of non-local elliptic system involving generalized nonlinearity
    El-Houari, Hamza
    Moussa, Hicham
    Sabiki, Hajar
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (07) : 2547 - 2572
  • [38] Lagrange Multiplier Rule to a Nonlinear Eigenvalue Problem in Musielak-Orlicz Spaces
    Khaled, Mohammed
    Rhoudaf, Mohamed
    Sabiki, Hajar
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (02) : 134 - 157
  • [39] Rothe's method for a nonlinear parabolic problem in Musielak-Orlicz spaces
    Mabdaoui, M.
    Essafi, L.
    Rhoudaf, M.
    APPLICABLE ANALYSIS, 2021, 100 (02) : 428 - 463
  • [40] DIRICHLET PROBLEM FOR STRONGLY NONLINEAR ELLIPTIC OPERATORS IN UNBOUNDED DOMAINS
    WEBB, JRL
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 10 (MAY): : 163 - 170