Entropy Solutions to a Strongly Nonlinear Unilateral Obstacle Elliptic Problem with Orlicz Growth

被引:0
|
作者
Mohamed Bourahma
Abdelmoujib Benkirane
Jaouad Bennouna
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar el Mahraz
关键词
Unilateral problem; Non-reflexive Orlicz spaces; Natural growth; 35J87; 35A01;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper , we investigate an existence result of solutions for the nonlinear elliptic unilateral problem u≥ψa.e. inΩ,Tk(u)∈W01LM(Ω),∫ΩA(x,u,∇u)∇Tk(u-φ)dx+∫ΩΦ(x,u)∇Tk(u-φ)dx≤∫ΩfTk(u-φ)dx,∀φ∈L∞(Ω)∩(Kψ={u∈W01LM(Ω):u≥ψa.e.inΩ}),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{llll} u\ge \psi \text { a.e. in }\Omega , T_k(u)\in W_{0}^{1}L_{M}(\Omega ),\\ \displaystyle \int _{\Omega }{\mathcal {A}}(x,u,\nabla u)\nabla T_k(u-\varphi )\>\mathrm{d}x+\displaystyle \int _{\Omega }\Phi (x,u)\nabla T_k(u-\varphi )\>\mathrm{d}x\\ \le \displaystyle \int _{\Omega }fT_k(u-\varphi )\>\mathrm{d}x,\\ \quad \forall \varphi \in L^{\infty }(\Omega )\cap \Big ({\mathbf {K}}_{\psi }= \Big \{u\in W_{0}^{1}L_{M}(\Omega ):u\ge \psi \text{ a.e. } \text{ in } \Omega \Big \}\Big ), \end{array}\right. \end{aligned}$$\end{document}where the lower-order term Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} verifies a generalized natural growth condition described by a suitable N-function M and the data f is an element of L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1(\Omega )$$\end{document}. No restriction is assumed neither on M nor on its conjugate M¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{M}}$$\end{document}.
引用
收藏
页码:587 / 612
页数:25
相关论文
共 50 条
  • [1] Entropy Solutions to a Strongly Nonlinear Unilateral Obstacle Elliptic Problem with Orlicz Growth
    Bourahma, Mohamed
    Benkirane, Abdelmoujib
    Bennouna, Jaouad
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (02) : 587 - 612
  • [2] Entropy and Renormalized Solutions for a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces
    L. M. Kozhevnikova
    Journal of Mathematical Sciences, 2024, 283 (2) : 255 - 271
  • [3] Strongly nonlinear elliptic variational unilateral problems in orlicz space
    Aharouch, L.
    Benkirane, A.
    Rhoudaf, M.
    ABSTRACT AND APPLIED ANALYSIS, 2006, : 1 - 20
  • [4] Entropy solutions of anisotropic elliptic nonlinear obstacle problem with measure data
    Abdelhafid Salmani
    Youssef Akdim
    Hicham Redwane
    Ricerche di Matematica, 2020, 69 : 121 - 151
  • [5] Entropy solutions of anisotropic elliptic nonlinear obstacle problem with measure data
    Salmani, Abdelhafid
    Akdim, Youssef
    Redwane, Hicham
    RICERCHE DI MATEMATICA, 2020, 69 (01) : 121 - 151
  • [6] Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces
    L. M. Kozhevnikova
    A. P. Kashnikova
    Differential Equations, 2023, 59 : 34 - 50
  • [7] Higher differentiability for solutions of a general class of nonlinear elliptic obstacle problems with Orlicz growth
    Byun, Sun-Sig
    Namkyeong, Cho
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (06):
  • [8] Higher differentiability for solutions of a general class of nonlinear elliptic obstacle problems with Orlicz growth
    Sun-Sig Byun
    Cho Namkyeong
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [9] UNILATERAL OBSTACLE PROBLEM FOR STRONGLY NONLINEAR 2ND-ORDER ELLIPTIC-OPERATORS
    LANDES, R
    MUSTONEN, V
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 95 - 107
  • [10] Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak-Orlicz Spaces
    Kozhevnikova, L. M.
    Kashnikova, A. P.
    DIFFERENTIAL EQUATIONS, 2023, 59 (01) : 34 - 50