Entropy Solutions to a Strongly Nonlinear Unilateral Obstacle Elliptic Problem with Orlicz Growth

被引:0
|
作者
Mohamed Bourahma
Abdelmoujib Benkirane
Jaouad Bennouna
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar el Mahraz
关键词
Unilateral problem; Non-reflexive Orlicz spaces; Natural growth; 35J87; 35A01;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper , we investigate an existence result of solutions for the nonlinear elliptic unilateral problem u≥ψa.e. inΩ,Tk(u)∈W01LM(Ω),∫ΩA(x,u,∇u)∇Tk(u-φ)dx+∫ΩΦ(x,u)∇Tk(u-φ)dx≤∫ΩfTk(u-φ)dx,∀φ∈L∞(Ω)∩(Kψ={u∈W01LM(Ω):u≥ψa.e.inΩ}),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{llll} u\ge \psi \text { a.e. in }\Omega , T_k(u)\in W_{0}^{1}L_{M}(\Omega ),\\ \displaystyle \int _{\Omega }{\mathcal {A}}(x,u,\nabla u)\nabla T_k(u-\varphi )\>\mathrm{d}x+\displaystyle \int _{\Omega }\Phi (x,u)\nabla T_k(u-\varphi )\>\mathrm{d}x\\ \le \displaystyle \int _{\Omega }fT_k(u-\varphi )\>\mathrm{d}x,\\ \quad \forall \varphi \in L^{\infty }(\Omega )\cap \Big ({\mathbf {K}}_{\psi }= \Big \{u\in W_{0}^{1}L_{M}(\Omega ):u\ge \psi \text{ a.e. } \text{ in } \Omega \Big \}\Big ), \end{array}\right. \end{aligned}$$\end{document}where the lower-order term Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} verifies a generalized natural growth condition described by a suitable N-function M and the data f is an element of L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1(\Omega )$$\end{document}. No restriction is assumed neither on M nor on its conjugate M¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{M}}$$\end{document}.
引用
收藏
页码:587 / 612
页数:25
相关论文
共 50 条
  • [31] WEAK SOLUTIONS OF DIRICHLET PROBLEM FOR STRONGLY NONLINEAR ELLIPTIC DIFFERENTIAL EQUATIONS
    SIMADER, CG
    MATHEMATISCHE ZEITSCHRIFT, 1976, 150 (01) : 1 - 26
  • [32] Gradient potential estimates in elliptic obstacle problems with Orlicz growth
    Xiong, Qi
    Zhang, Zhenqiu
    Ma, Lingwei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [33] Gradient potential estimates in elliptic obstacle problems with Orlicz growth
    Qi Xiong
    Zhenqiu Zhang
    Lingwei Ma
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [34] Entropy solution for a nonlinear elliptic problem with lower order term in Musielak-Orlicz spaces
    Elarabi, R.
    Rhoudaf, M.
    Sabiki, H.
    RICERCHE DI MATEMATICA, 2018, 67 (02) : 549 - 579
  • [35] Solutions with Polynomial Growth to an Autonomous Nonlinear Elliptic Problem
    Wei, Juncheng
    Wang, Kelei
    ADVANCED NONLINEAR STUDIES, 2013, 13 (04) : 921 - 932
  • [36] ENTROPY SOLUTIONS TO NONLINEAR ELLIPTIC ANISOTROPIC PROBLEM WITH ROBIN BOUNDARY CONDITION
    Bonzi, B. K.
    Ouaro, S.
    Zongo, F. D. Y.
    MATEMATICHE, 2013, 68 (02): : 53 - 76
  • [37] Stability of solutions to obstacle problems with generalized Orlicz growth
    Harjulehto, Petteri
    Karppinen, Arttu
    FORUM MATHEMATICUM, 2024, 36 (02) : 285 - 304
  • [38] On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces
    L. M. Kozhevnikova
    Computational Mathematics and Mathematical Physics, 2017, 57 : 434 - 452
  • [39] Strongly nonlinear elliptic boundary value problems in Musielak–Orlicz spaces
    Abdeslam Talha
    Abdelmoujib Benkirane
    Monatshefte für Mathematik, 2018, 186 : 745 - 776
  • [40] ENTROPY SOLUTIONS FOR STRONGLY NONLINEAR PARABOLIC PROBLEMS WITH LOWER ORDER TERMS IN MUSIELAK-ORLICZ SPACES
    Talha, A.
    Vall, M. S. B. Elemine
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (02): : 201 - 228