Entropy Solutions to a Strongly Nonlinear Unilateral Obstacle Elliptic Problem with Orlicz Growth

被引:0
|
作者
Mohamed Bourahma
Abdelmoujib Benkirane
Jaouad Bennouna
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar el Mahraz
关键词
Unilateral problem; Non-reflexive Orlicz spaces; Natural growth; 35J87; 35A01;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper , we investigate an existence result of solutions for the nonlinear elliptic unilateral problem u≥ψa.e. inΩ,Tk(u)∈W01LM(Ω),∫ΩA(x,u,∇u)∇Tk(u-φ)dx+∫ΩΦ(x,u)∇Tk(u-φ)dx≤∫ΩfTk(u-φ)dx,∀φ∈L∞(Ω)∩(Kψ={u∈W01LM(Ω):u≥ψa.e.inΩ}),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{llll} u\ge \psi \text { a.e. in }\Omega , T_k(u)\in W_{0}^{1}L_{M}(\Omega ),\\ \displaystyle \int _{\Omega }{\mathcal {A}}(x,u,\nabla u)\nabla T_k(u-\varphi )\>\mathrm{d}x+\displaystyle \int _{\Omega }\Phi (x,u)\nabla T_k(u-\varphi )\>\mathrm{d}x\\ \le \displaystyle \int _{\Omega }fT_k(u-\varphi )\>\mathrm{d}x,\\ \quad \forall \varphi \in L^{\infty }(\Omega )\cap \Big ({\mathbf {K}}_{\psi }= \Big \{u\in W_{0}^{1}L_{M}(\Omega ):u\ge \psi \text{ a.e. } \text{ in } \Omega \Big \}\Big ), \end{array}\right. \end{aligned}$$\end{document}where the lower-order term Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} verifies a generalized natural growth condition described by a suitable N-function M and the data f is an element of L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1(\Omega )$$\end{document}. No restriction is assumed neither on M nor on its conjugate M¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{M}}$$\end{document}.
引用
收藏
页码:587 / 612
页数:25
相关论文
共 50 条
  • [21] EXISTENCE OF ENTROPY SOLUTIONS FOR NONLINEAR ELLIPTIC PROBLEM HAVING LARGE MONOTONOCITY IN WEIGHTED ORLICZ-SOBOLEV SPACES
    El Haji, B.
    El Moumni, M.
    Kouhaila, K.
    MATEMATICHE, 2021, 76 (01): : 37 - 61
  • [22] EXISTENCE OF SOLUTIONS FOR STRONGLY NONLINEAR ELLIPTIC DIFFERENTIAL INCLUSIONS WITH UNILATERAL CONSTRAINTS
    Motreanu, D.
    Motreanu, V. V.
    Papageorgiou, N. S.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (09) : 961 - 982
  • [23] Entropy solution for a nonlinear elliptic problem with lower order term in Musielak–Orlicz spaces
    R. Elarabi
    M. Rhoudaf
    H. Sabiki
    Ricerche di Matematica, 2018, 67 : 549 - 579
  • [24] Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak-Orlicz spaces
    Li, Ying
    Yao, Fengping
    Zhou, Shulin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [25] Entropy solutions for a doubly nonlinear elliptic problem with variable exponent
    Bonzi, Bernard K.
    Ouaro, Stanislas
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) : 392 - 405
  • [26] ENTROPY SOLUTIONS TO NONLINEAR ELLIPTIC ANISOTROPIC PROBLEM WITH VARIABLE EXPONENT
    Benboubker, Mohamed Badr
    Hjiaj, Hassane
    Ouaro, Stanislas
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2014, 4 (03): : 245 - 270
  • [27] Entropy Solutions for Nonlinear Elliptic Anisotropic Homogeneous Neumann Problem
    Bonzi, B. K.
    Ouaro, S.
    Zongo, F. D. Y.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 2013
  • [28] A Strongly Nonlinear Elliptic Problem with Generalized Growth in Musielak Spaces
    Bourahma, Mohamed
    Benkirane, Abdelmoujib
    Bennouna, Jaouad
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (01) : 51 - 85
  • [29] A Strongly Nonlinear Elliptic Problem with Generalized Growth in Musielak Spaces
    Mohamed Bourahma
    Abdelmoujib Benkirane
    Jaouad Bennouna
    Differential Equations and Dynamical Systems, 2024, 32 : 51 - 85
  • [30] EXISTENCE AND REGULARITY OF ENTROPY SOLUTIONS FOR STRONGLY NONLINEAR p(x)-ELLIPTIC EQUATIONS
    Azroul, Elhoussine
    Hjiaj, Hassane
    Touzani, Abdelfattah
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,