Comments on some results related to soft separation axioms

被引:0
|
作者
T. M. Al-shami
机构
[1] Sana’a University,Department of Mathematics
来源
Afrika Matematika | 2020年 / 31卷
关键词
Soft set; Soft point; Soft separation axioms; 54D10; 54D15;
D O I
暂无
中图分类号
学科分类号
摘要
Separation axioms are among the most widespread, significant and motivating concepts via classical topology. They can be utilized to approach problems related to digital topology and to establish more restricted families of topological spaces. This matter applies to them via soft topology as well. Therefore many research studies about soft separation axioms and their properties have been carried out. However, we observe existing some errors over these studies which it can be attributed to the different types of belong and non-belong relations which were defined via the soft set theory, and to the chosen objects of study: are they ordinary points or soft points? Our desire of removing confusions and constructing accurate framework motivates us to do this investigation. Through this paper, we show some alleged findings obtained in Bayramov and Aras (TWMS J Pure Appl Math 9(1):82–93, 2018), Hussain and Ahmad (Hacet J Math Stat 44(3):559–568, 2015), Matejdes (Int J Pure Appl Math 116(1):197–200, 2017), Singh and Noorie (Ann Fuzzy Math Inform 14(5):503–513, 2017) by giving convenient examples and then we formulate the right forms of these findings. In the last section, we demonstrate the relationships among soft T4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_4$$\end{document}-spaces introduced in the previous studies and prove that all types of soft Ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_i$$\end{document}-spaces are preserved under finitely soft product space in the cases of i=0,1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=0, 1, 2$$\end{document}.
引用
收藏
页码:1105 / 1119
页数:14
相关论文
共 50 条
  • [41] On some low separation axioms in topological spaces
    Caldas, M
    Jafari, S
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (01): : 93 - 104
  • [42] Some games via Gα - separation axioms
    Ali, Tabarak A.
    Esmaeel, R. B.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (07) : 1659 - 1664
  • [43] SOME MORE SEPARATION AXIOMS IN BITOPOLOGICAL SPACES
    SINGAL, MK
    SINGAL, AR
    ANNALES DE LA SOCIETE, 1970, 84 (02): : 207 - &
  • [44] SOME RESULTS RELATED TO SOFT TOPOLOGICAL SPACES
    Peyghan, E.
    Samadi, B.
    Tayebi, A.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (04): : 325 - 336
  • [45] Axioms of separation in semitopological groups and related functors
    Tkachenko, M.
    TOPOLOGY AND ITS APPLICATIONS, 2014, 161 : 364 - 376
  • [46] Clarifying Soft Semi-Separation Axioms Using the Concept of Soft Element
    Aydin, Tugce
    Enginoglu, Serdar
    Mollaogullari, Ahmet
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2023, 19 (01) : 105 - 130
  • [47] Soft somewhat open sets: soft separation axioms and medical application to nutrition
    Tareq M. Al-shami
    Computational and Applied Mathematics, 2022, 41
  • [48] Soft Slight Omega-Continuity and Soft Ultra-Separation Axioms
    Al Ghour, Samer
    Al-Saadi, Hanan
    MATHEMATICS, 2023, 11 (15)
  • [49] Soft somewhat open sets: soft separation axioms and medical application to nutrition
    Al-shami, Tareq M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (05):
  • [50] Two types of separation axioms on supra soft topological spaces
    Al-shami, Tareq M.
    El-Shafei, Mohammed E.
    DEMONSTRATIO MATHEMATICA, 2019, 52 (01) : 147 - 165