Comments on some results related to soft separation axioms

被引:0
|
作者
T. M. Al-shami
机构
[1] Sana’a University,Department of Mathematics
来源
Afrika Matematika | 2020年 / 31卷
关键词
Soft set; Soft point; Soft separation axioms; 54D10; 54D15;
D O I
暂无
中图分类号
学科分类号
摘要
Separation axioms are among the most widespread, significant and motivating concepts via classical topology. They can be utilized to approach problems related to digital topology and to establish more restricted families of topological spaces. This matter applies to them via soft topology as well. Therefore many research studies about soft separation axioms and their properties have been carried out. However, we observe existing some errors over these studies which it can be attributed to the different types of belong and non-belong relations which were defined via the soft set theory, and to the chosen objects of study: are they ordinary points or soft points? Our desire of removing confusions and constructing accurate framework motivates us to do this investigation. Through this paper, we show some alleged findings obtained in Bayramov and Aras (TWMS J Pure Appl Math 9(1):82–93, 2018), Hussain and Ahmad (Hacet J Math Stat 44(3):559–568, 2015), Matejdes (Int J Pure Appl Math 116(1):197–200, 2017), Singh and Noorie (Ann Fuzzy Math Inform 14(5):503–513, 2017) by giving convenient examples and then we formulate the right forms of these findings. In the last section, we demonstrate the relationships among soft T4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_4$$\end{document}-spaces introduced in the previous studies and prove that all types of soft Ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_i$$\end{document}-spaces are preserved under finitely soft product space in the cases of i=0,1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=0, 1, 2$$\end{document}.
引用
收藏
页码:1105 / 1119
页数:14
相关论文
共 50 条
  • [31] Topological separation axioms of soft rough formal context
    Fu, Li
    Liu, Zhen
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2016, 31 (02): : 165 - 171
  • [32] New separation axioms in binary soft topological spaces
    Patil, P.G.
    Bhat, Nagashree N.
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 775 - 783
  • [34] New separation axioms in binary soft topological spaces
    Patil, P. G.
    Bhat, Nagashree N.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 775 - 783
  • [35] Two new forms of ordered soft separation axioms
    Al-shami, Tareq M.
    El-Shafei, Mohammed E.
    DEMONSTRATIO MATHEMATICA, 2020, 53 (01) : 8 - 26
  • [36] Separation Axioms in Soft L-topological Spaces
    Pai, Sandhya S
    Thankachan, Baiju
    IAENG International Journal of Applied Mathematics, 2023, 53 (01):
  • [37] New Interval-Valued Soft Separation Axioms
    Baek, Jong Il
    Al-shami, Tareq M.
    Jafari, Saeid
    Cheong, Minseok
    Hur, Kul
    AXIOMS, 2024, 13 (07)
  • [38] On some low separation axioms in bitopological spaces
    Caldas, M.
    Jafari, S.
    Ponmani, S. A.
    Thivagar, M. L.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2006, 24 (1-2): : 69 - 78
  • [39] Some separation axioms for partially ordered sets
    Alshehri, Maryam. G.
    Lazaar, Sami
    Mhemdi, Abdelwaheb
    Zidani, Neama
    FILOMAT, 2023, 37 (07) : 2173 - 2182
  • [40] Some separation axioms in generalized topological spaces
    Pankajam, V.
    Sivaraj, Diraviam
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2013, 31 (01): : 29 - 42