Comments on some results related to soft separation axioms

被引:0
|
作者
T. M. Al-shami
机构
[1] Sana’a University,Department of Mathematics
来源
Afrika Matematika | 2020年 / 31卷
关键词
Soft set; Soft point; Soft separation axioms; 54D10; 54D15;
D O I
暂无
中图分类号
学科分类号
摘要
Separation axioms are among the most widespread, significant and motivating concepts via classical topology. They can be utilized to approach problems related to digital topology and to establish more restricted families of topological spaces. This matter applies to them via soft topology as well. Therefore many research studies about soft separation axioms and their properties have been carried out. However, we observe existing some errors over these studies which it can be attributed to the different types of belong and non-belong relations which were defined via the soft set theory, and to the chosen objects of study: are they ordinary points or soft points? Our desire of removing confusions and constructing accurate framework motivates us to do this investigation. Through this paper, we show some alleged findings obtained in Bayramov and Aras (TWMS J Pure Appl Math 9(1):82–93, 2018), Hussain and Ahmad (Hacet J Math Stat 44(3):559–568, 2015), Matejdes (Int J Pure Appl Math 116(1):197–200, 2017), Singh and Noorie (Ann Fuzzy Math Inform 14(5):503–513, 2017) by giving convenient examples and then we formulate the right forms of these findings. In the last section, we demonstrate the relationships among soft T4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_4$$\end{document}-spaces introduced in the previous studies and prove that all types of soft Ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_i$$\end{document}-spaces are preserved under finitely soft product space in the cases of i=0,1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=0, 1, 2$$\end{document}.
引用
收藏
页码:1105 / 1119
页数:14
相关论文
共 50 条
  • [21] Separation axioms of bipolar soft topological space
    Fadel, Asmaa
    Hassan, Nasruddin
    14TH INTERNATIONAL SYMPOSIUM ON GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 2019, 1212
  • [22] SEPARATION AXIOMS IN BIPOLAR SOFT TOPOLOGICAL SPACES
    Gunduz, C.
    Bayramov, S.
    Zeynalov, J.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 15 (01): : 15 - 25
  • [23] Idealization of some weak separation axioms
    Arenas, FG
    Dontchev, J
    Puertas, ML
    ACTA MATHEMATICA HUNGARICA, 2000, 89 (1-2) : 47 - 53
  • [24] Three new soft separation axioms in soft topological spaces
    Abuzaid, Dina
    Al Ghour, Samer
    AIMS MATHEMATICS, 2024, 9 (02): : 4632 - 4648
  • [25] Idealization of Some Weak Separation Axioms
    F. G. Arenas
    J. Dontchev
    M. L. Puertas
    Acta Mathematica Hungarica, 2000, 89 : 47 - 53
  • [26] Separation Axioms in Supra Soft Bitopological Spaces
    Aras, Cigdem Gunduz
    Bayramov, Sadi
    FILOMAT, 2018, 32 (10) : 3479 - 3486
  • [27] Some Generalized Fuzzy Separation Axioms
    Khedr, F. H.
    Sayed, O. R.
    Mohamed, S. R.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [28] Optimality of mappings and some separation axioms
    Duszyński Z.
    Rendiconti del Circolo Matematico di Palermo, 2008, 57 (2) : 213 - 228
  • [29] Soft Separation Axioms and Fixed Soft Points Using Soft Semiopen Sets
    Al-Shami, T. M.
    JOURNAL OF APPLIED MATHEMATICS, 2020, 2020
  • [30] The Role of Soft θ-Topological Operators in Characterizing Various Soft Separation Axioms
    Ameen, Zanyar A.
    Al-shami, Tareq M.
    Mhemdi, Abdelwaheb
    El-Shafei, Mohammed E.
    JOURNAL OF MATHEMATICS, 2022, 2022