Comments on some results related to soft separation axioms

被引:0
|
作者
T. M. Al-shami
机构
[1] Sana’a University,Department of Mathematics
来源
Afrika Matematika | 2020年 / 31卷
关键词
Soft set; Soft point; Soft separation axioms; 54D10; 54D15;
D O I
暂无
中图分类号
学科分类号
摘要
Separation axioms are among the most widespread, significant and motivating concepts via classical topology. They can be utilized to approach problems related to digital topology and to establish more restricted families of topological spaces. This matter applies to them via soft topology as well. Therefore many research studies about soft separation axioms and their properties have been carried out. However, we observe existing some errors over these studies which it can be attributed to the different types of belong and non-belong relations which were defined via the soft set theory, and to the chosen objects of study: are they ordinary points or soft points? Our desire of removing confusions and constructing accurate framework motivates us to do this investigation. Through this paper, we show some alleged findings obtained in Bayramov and Aras (TWMS J Pure Appl Math 9(1):82–93, 2018), Hussain and Ahmad (Hacet J Math Stat 44(3):559–568, 2015), Matejdes (Int J Pure Appl Math 116(1):197–200, 2017), Singh and Noorie (Ann Fuzzy Math Inform 14(5):503–513, 2017) by giving convenient examples and then we formulate the right forms of these findings. In the last section, we demonstrate the relationships among soft T4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_4$$\end{document}-spaces introduced in the previous studies and prove that all types of soft Ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_i$$\end{document}-spaces are preserved under finitely soft product space in the cases of i=0,1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=0, 1, 2$$\end{document}.
引用
收藏
页码:1105 / 1119
页数:14
相关论文
共 50 条
  • [1] Comments on some results related to soft separation axioms
    Al-shami, T. M.
    AFRIKA MATEMATIKA, 2020, 31 (7-8) : 1105 - 1119
  • [2] RESULTS OF SOME SEPARATION AXIOMS IN SUPRA SOFT TOPOLOGICAL SPACES
    Aras, C. G.
    Bayramov, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 58 - 63
  • [3] On some Separation Axioms in Soft Lattice Topological Spaces
    Pai, Sandhya S.
    Baiju, T.
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (12) : 3807 - 3816
  • [4] Some New Separation Axioms in Fuzzy Soft Topological Spaces
    Taha, Islam M.
    FILOMAT, 2021, 35 (06) : 1775 - 1783
  • [5] Some Separation Axioms via Soft Somewhat Open Sets
    Alqurashi, Wafa
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
  • [6] Computable soft separation axioms
    Elsayed, S. M.
    Ng, Keng Meng
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2023, 33 (09) : 781 - 808
  • [7] Soft α-separation axioms and α-fixed soft points
    Al-shami, Tareq M.
    Abo-Tabl, El-Sayed A.
    AIMS MATHEMATICS, 2021, 6 (06): : 5675 - 5694
  • [8] Soft separation axioms in soft topological spaces
    Hussain, Sabir
    Ahmad, Bashir
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (03): : 559 - 568
  • [9] FUZZY SOFT QUASI SEPARATION AXIOMS
    Dizman , Tugba Han
    Demirtas , Naime
    Yuksel, Saziye
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (01): : 102 - 110
  • [10] On soft pc-separation axioms
    Hamko, Qumri H.
    Ahmed, Nehmat K.
    Khalaf, Alias B.
    DEMONSTRATIO MATHEMATICA, 2020, 53 (01) : 67 - 79