Tverberg-Type Theorems for Separoids

被引:0
|
作者
Juan Jose Montellano-Ballesteros
Attila Por
Ricardo Strausz
机构
[1] Instituto de Matematicas,
[2] U.N.A.M.,undefined
[3] Circuito Exterior,undefined
[4] C.U.,undefined
[5] 04510 Mexico D.F.,undefined
[6] Institut Teoretick\'e Informatiky,undefined
[7] Universita Karlova v Praze,undefined
[8] Malostranske nam. 25,undefined
[9] Praha 1,undefined
来源
关键词
Computational Mathematic; Euclidean Space; Convex Hull; General Position; Injective Function;
D O I
暂无
中图分类号
学科分类号
摘要
Let $S$ be a $d$-dimensional separoid of $(k-1)(d+1)+1$ convex sets in some "large-dimensional" Euclidean space $\E^N$. We prove a theorem that can be interpreted as follows: if the separoid $S$ can be mapped with a monomorphism to a $d$-dimensional separoid of points $P$ in general position, then there exists a $k$-colouring $\varsigma\colon \ S\to K_k$ such that, for each pair of colours $i,j\in K_k$, the convex hulls of their preimages do intersect---they are not separated. Here, by a monomorphism we mean an injective function such that the preimage of separated sets are separated. In a sense, this result is "dual" to the Hadwiger-type theorems proved by Goodman and Pollack (1988) and Arocha et al. (2002). We also introduce $\T(k,d)$, the minimum number $n$ such that all $d$-dimensional separoids of order at least $n$ can be $k$-coloured as before. By means of examples and explicit colourings, we show that for all $k>2$ and $d>0$, \[(k-1)(d+1)+1<\T(k,d)<{k\choose2}(d+1)+1.\] Furthermore, by means of a probabilistic argument, we show that for each $d$ there exists a constant $C=C(d)$ such that for all $k$, $\T(k,d)\leq Ck\log k$.
引用
收藏
页码:513 / 523
页数:10
相关论文
共 50 条
  • [41] Symmetric multiple chessboard complexes and a new theorem of Tverberg type
    Duško Jojić
    Siniša T. Vrećica
    Rade T. Živaljević
    Journal of Algebraic Combinatorics, 2017, 46 : 15 - 31
  • [42] Optimal bounds for a colorful Tverberg-Vrecica type problem
    Blagojevic, Pavle V. M.
    Matschke, Benjamin
    Ziegler, Guenter M.
    ADVANCES IN MATHEMATICS, 2011, 226 (06) : 5198 - 5215
  • [43] Symmetric multiple chessboard complexes and a new theorem of Tverberg type
    Jojic, Dusko
    Vrecica, Sinisa T.
    Zivaljevic, Rade T.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (01) : 15 - 31
  • [44] Roberts-type embeddings and conversion of transversal Tverberg's theorem
    Bogatyi, SA
    Valov, VM
    SBORNIK MATHEMATICS, 2005, 196 (11-12) : 1585 - 1603
  • [45] Bernstein-type theorems and uniqueness theorems
    Logvinenko V.
    Nazarova N.
    Ukrainian Mathematical Journal, 2004, 56 (2) : 244 - 263
  • [46] THEOREMS OF KOROVKIN TYPE
    GADZHIEV, AD
    MATHEMATICAL NOTES, 1976, 20 (5-6) : 995 - 998
  • [47] PICARD TYPE THEOREMS
    BROWN, L
    GAUTHIER, P
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 249 - &
  • [48] On Pisier Type Theorems
    Nesetril, Jaroslav
    Rodl, Vojtech
    Sales, Marcelo
    COMBINATORICA, 2024, : 1211 - 1232
  • [49] Theorems of Sylow type
    Vdovin, E. P.
    Revin, D. O.
    RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (05) : 829 - 870
  • [50] FURTHER THEOREMS OF THE ROGERS-RAMANUJAN TYPE THEOREMS
    SUBBARAO, MV
    AGARWAL, AK
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1988, 31 (02): : 210 - 214