Tverberg-Type Theorems for Separoids

被引:0
|
作者
Juan Jose Montellano-Ballesteros
Attila Por
Ricardo Strausz
机构
[1] Instituto de Matematicas,
[2] U.N.A.M.,undefined
[3] Circuito Exterior,undefined
[4] C.U.,undefined
[5] 04510 Mexico D.F.,undefined
[6] Institut Teoretick\'e Informatiky,undefined
[7] Universita Karlova v Praze,undefined
[8] Malostranske nam. 25,undefined
[9] Praha 1,undefined
来源
关键词
Computational Mathematic; Euclidean Space; Convex Hull; General Position; Injective Function;
D O I
暂无
中图分类号
学科分类号
摘要
Let $S$ be a $d$-dimensional separoid of $(k-1)(d+1)+1$ convex sets in some "large-dimensional" Euclidean space $\E^N$. We prove a theorem that can be interpreted as follows: if the separoid $S$ can be mapped with a monomorphism to a $d$-dimensional separoid of points $P$ in general position, then there exists a $k$-colouring $\varsigma\colon \ S\to K_k$ such that, for each pair of colours $i,j\in K_k$, the convex hulls of their preimages do intersect---they are not separated. Here, by a monomorphism we mean an injective function such that the preimage of separated sets are separated. In a sense, this result is "dual" to the Hadwiger-type theorems proved by Goodman and Pollack (1988) and Arocha et al. (2002). We also introduce $\T(k,d)$, the minimum number $n$ such that all $d$-dimensional separoids of order at least $n$ can be $k$-coloured as before. By means of examples and explicit colourings, we show that for all $k>2$ and $d>0$, \[(k-1)(d+1)+1<\T(k,d)<{k\choose2}(d+1)+1.\] Furthermore, by means of a probabilistic argument, we show that for each $d$ there exists a constant $C=C(d)$ such that for all $k$, $\T(k,d)\leq Ck\log k$.
引用
收藏
页码:513 / 523
页数:10
相关论文
共 50 条
  • [21] Tverberg partitions and Borsuk-Ulam theorems
    Sarkaria, KS
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 196 (01) : 231 - 241
  • [22] Theorems of Caratheodory, Helly, and Tverberg Without Dimension
    Adiprasito, Karim
    Barany, Imre
    Mustafa, Nabil H.
    Terpai, Tamas
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 64 (02) : 233 - 258
  • [23] Theorems of Carathéodory, Helly, and Tverberg Without Dimension
    Karim Adiprasito
    Imre Bárány
    Nabil H. Mustafa
    Tamás Terpai
    Discrete & Computational Geometry, 2020, 64 : 233 - 258
  • [24] Tverberg's transversal conjecture and analogues of nonembeddability theorems for transversals
    Karasev, Roman N.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (03) : 513 - 525
  • [25] Quantitative Tverberg Theorems Over Lattices and Other Discrete Sets
    De Loera, Jesus A.
    La Haye, Reuben N.
    Rolnick, David
    Soberon, Pablo
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (02) : 435 - 448
  • [26] Quantitative Tverberg Theorems Over Lattices and Other Discrete Sets
    Jesus A. De Loera
    Reuben N. La Haye
    David Rolnick
    Pablo Soberón
    Discrete & Computational Geometry, 2017, 58 : 435 - 448
  • [27] (H, G)-coincidence theorems for manifolds and a topological Tverberg type theorem for any natural number r
    de Mattos, Denise
    dos Santos, Edivaldo L.
    Souza, Taciana O.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (04) : 567 - 579
  • [28] A Tverberg type theorem for staircase
    Breen, Marilyn
    AEQUATIONES MATHEMATICAE, 2024, 98 (03) : 739 - 750
  • [29] Tverberg's Transversal Conjecture and Analogues of Nonembeddability Theorems for Transversals
    Roman N. Karasev
    Discrete & Computational Geometry, 2007, 38 : 513 - 525
  • [30] A Tverberg type theorem for staircase convexity
    Breen, Marilyn
    AEQUATIONES MATHEMATICAE, 2023, 98 (3) : 739 - 750